MTA launch event, 2021-05-29

by Dave Nordling, Reaction Research Society


The Reaction Research Society held a launch event at the Mojave Test Area mainly to support the UCLA Prometheus team for a static fire test of their high powered hybrid motor. UCLA chose one of the largest nitrous oxide hybrid motor designs, the M1575, made by Contrails Rocketry. Dave Crisalli was the pyrotechnic operator in charge for this event. I was his apprentice for the hybrid static fire.

There were three main activities at this event. The first was the UCLA Rocket Project making their preparations to launch their ethanol and LOX vehicle from the Friends of Amateur Rocketry (FAR) site from the 60-foot rail. FAR is just to the south of the RRS MTA where the UCLA Rocket Project had twice in one day static fired their 750 lbf liquid propellant rocket engine just four weeks earlier on 05-01-2021.

Weather conditions were ideal with winds being nearly still for most of the morning. This makes little difference for the hybrid motor static fire testing at the RRS MTA which was the second project by UCLA. Wind would factor heavily in the flight of the UCLA’s liquid rocket.

The third planned activity for UCLA was a series of model rocket flights from several high school teams mentored by UCLA graduate and undergraduate students. Still winds made for easier recovery of the first rockets launched that day.

UCLA Prometheus team prepares for static fire at the RRS MTA on 5-29-2021
Dave Crisalli gives the MTA safety briefing for the event in the loading area where the model rockets were assembled for flight.
UCLA graduate students conducted the model rocket launches from just west of the large test stand at the MTA

UCLA at the end of each Spring Quarter conducts a launch event where student groups build small rockets with egg payloads using single and dual-stage vehicles with model rocket class motors (G and under). UCLA graduate students and Professor Mitchell Spearrin were leading this event.

It is good experience for beginners and experts alike to build and fly model rockets., The RRS has it’s own such internal program called the Yoerg Challenge which is to motivate all members to build and fly a model rocket kit at least once from the RRS MTA. The RRS is known as an experimental society and not limited to the model rocket code, but we are also fully supportive of all forms of propulsion as long as it is safely conducted and compliant to the regulations set by the state of California.

As the UCLA hybrid rocket team was making their system checks, they discovered a problem in their nitrous filling system and valve commands. During this diagnostic period, some of the RRS members went to the nearby FAR site to see how the UCLA liquid rocket preparations were progressing.

UCLA’s liquid rocket set on the 60-foot rail launcher at FAR. The team preparing the vehicle for erecting, loading then flight.
RRS members from left to right, Bill Inman, Waldo Stakes, John Wells and Manuel Marquez, inspect the UCLA liquid rocket on the 60-foot launcher deployed at the FAR site.
A few last minute fixes and the rocket was made ready.
The liquid rocket sits on the rail before raising it for launch.
UCLA’s rocket is in position getting ready to clear the area for propellant loading and pressurization operations.

Some of the RRS members remained at the FAR site to witness the launch. After two years of design, planning, build and world pandemic, the UCLA team liquid rocket launch was an amazing success. Due to the relatively low winds that day under clear skies, recovery was made just under a mile away. Preliminary data from telemetry confirmed a new university team altitude record of 22,000 feet. It was an amazing sight to witness from the observation bunker at the RRS MTA.

UCLA’s liquid rocket had a perfect launch on 5-29-2021 setting a new altitude record of 22,000 feet by a university team. Photo by Xavier Marshall, RRS.

The UCLA Prometheus team had corrected their initial electrical problem and began the series of procedural checks to familiarize the new members of the hybrid rocket team. Some minor adjustments of the motor mount alignment was necessary before getting into test.

The UCLA Prometheus team makes some adjustments to better align the hybrid motor in the vertical skid mounted to classic I-beam at the RRS MTA.
The nitrous oxide K-bottle sits inverted in the sloped stand to allow the liquid to flow from the port. Some nitrous oxide bottles come with an internal siphon line to avoid having to invert the container. The bottle is also being chilled with ice to keep the oxidizer sufficiently dense and improve performance in hot-fire.
The top bulkhead of the hybrid motor is attached to the load cell for thrust measurement. A pressure transmitter is tapped into the nitrous oxide volume to further gauge performance.
The high-powered hybrid motor by Contrails uses four 1/4-inch fill lines and a single smaller vent line from the same floating injector at the mid-point inside
Dave Crisalli (right) inspects the hybrid motor on the test rails before the firing
UCLA Prometheus team tracks their written procedures as they progress to hot-fire in the old blockhouse.

The hybrid motor firing proceeded without further problems and resulted in a spectacular test meeting expected performance. Continuous thrust levels over 600 lbf were recorded but data analysis is still ongoing.

The hybrid motor at startup.
The UCLA hybrid motor at full thrust. Chamber pressure was over 1000 psia.

The team had a second hybrid motor grain ready for another firing so they proceeded with disassembly and inspection of the parts. The floating injector seals were still in good condition but the graphite nozzle having survived many prior hot fire tests did not survive that day’s test. Although the throat was in good condition, the inlet taper had cracked requiring a replacement the team did not have.

The top half of the floating injector with its internal siphon tube protruding up to near the top bulkhead.
The floating injector being removed from the lower half containing the spent fuel propellant grain.
The floating injector was removed after hot-fire and the dual O-ring seals were inspected. Seals were ok for re-use.
The nozzle assembly did not pass inspection after the first and only hot-fire on 05-29-2021.
The graphite nozzle fractured at the inlet taper from the first and only firing that day.

UCLA Prometheus was pleased with the results from the single firing and will proceed with integrating the motor into their flight vehicle for a launch from FAR on June 19, 2021. The RRS will hold an event at the Mojave Test Area on this same Saturday for member projects and will observe the flight from our northern vantage point.

UCLA avionics team conducted a few tests on the GPS tracking module that will fly on their vehicle in June 2021.

In the last hours of the day, after most of the UCLA liquid and hybrid teams had cleared the area, packaged and carried away their trash, packed their equipment and departed the RRS MTA and FAR sites. The UCLA avionics team remained at the MTA to conduct another series of tests on the GPS tracking system. The society was glad to support this diligence which will help assure success in one of the most important aspects of rocketry which is data acquisition from telemetry. If there is no data, it didn’t happen.

For any group interested in using the RRS MTA for their propulsion related projects, download one of our Standard Record Forms from our RRS.ORG website and submit this request to the RRS president. The society has had a long relationship with UCLA and USC, but we are also supportive to any amateur, professional or academic groups wanting to learn from test.

president@rrs.org


MTA launch event, 2021-05-01

by Dave Nordling, Reaction Research Society


The Reaction Research Society held an event at the Mojave Test Area (MTA) on May 1, 2021. Dave Crisalli was the pyrotechnic operator in charge. RRS president, Osvaldo Tarditti, was also present along with myself, It was not to be a launch event as all planned tests were static firings by the UCLA liquid rocket team and the UCLA hybrid motor team. The winds were very high that day consistently above 20 MPH and gusts above 50 MPH at times. The weather otherwise was very cooperative with comfortable temperatures.

Other than gusting and persistently hugh winds, it was a great day at the MTA on 5/1/2021

Dave Crisalli gave a safety briefing in the George Dosa building to all attendees before the first static fire campaign would begin. The RRS pyrotechnic operator in charge is responsible for the safety of all during the event. Hazard identification (spiders, snakes, sharp objects) and good practices (hydration, sunscreen) are always part of the briefing, One of the most important things, Dave Crisalli mentioned was not to be in a hurry. It is very important to take the proper time to do things correctly and safely even if it means not proceeding with the intended test that day. Taking your time means avoiding mistakes and improving your chances for success.

Xavier Marshall observes the UCLA hybrid motor controls setup at the RRS MTA on 5/1/2021.

RRS members, Bill Inman and John Wells came to the MTA for the event, but only as spectators. The Solar Cat project is still active and undergoing improvements to its sun tracking method. Bill is also expanding the collector area and adjusting the necessary support structures. It is likely Bill and John will be back for the next RRS MTA event.

Dave Crisalli (left) and Bill Inman (right) at the RRS MTA vertical test stand on 5/1/2021

Also in attendance was the Compton Comet team who have all recently joined the society as members. It was their first time visiting the MTA and getting a chance to see another university team conduct liquid rocket test operations at our vertical test stand.

Members of the Compton Comet team, Manuel Marquez, Aarington Mitchell, Tre Willingham (from left to right) wait at the Observation Bunker at the MTA for the hybrid motor firing with Waldo Stakes (at right).

RRS member, Wolfram Blume came by the RRS MTA to take measurements of the vertical test stand for a future static fire test of his ramjet upper stage engine. He intends to use a leaf-blower compressor motor to simulate foward air flow, but a lot of calculations and planning is required before proceeding. The vertical test stand has a winch and pulley system still attached from Richard Garcia’s liquid motor test in 2017. It should be adequate for Wolfram’s lifting needs when mounting the test equipment to the stand.

The vertical test stand with the winch and pulley system still mounted.

The UCLA team spent the night before on our site setting up their equipment. This advanced planning paid off as they were ready for the first of two hot-fires of the liquid rocket just past noon.

Camera adjustments made before the first hot fire of the UCLA liquid rocket on 5/1/2021

Often, it can take several hours to verify all systems are in good working order before testing especially with a liquid rocket, The hybrid rocket was no exception that day.

The UCLA hybrid motor team installs the fuel grain and nozzle into the 98mm standard motor casing,
The UCLA hybrid motor mounted for static fire on the RRS MTA I-beam

One of the two load cells had failed so the two teams had to share the same load cell between the hybrid motor and liquid motor firings. UCLA chose to let the hybrid team go next after successful results were seen with the first firing, The UCLA hybrid motor team corrected a few issues and were able conduct a successful hot-fire by late afternoon.

The society members in attendance also had time to make some minor repairs to the new mobile trailer asset, A steel plate was added to keep intruders from entering. Thanks to Waldo Stakes for doing the welding for this temporary fix.

The mobile trailer at the RRS MTA needs a lot of repairs

There was sufficient daylight remaining for a second hot-fire of the UCLA liquid rocket, The team had another engine with the previous injector design from last built and ready with a fresh internal ablative liner. They had retanked another load of ethanol and the liquid oxygen cylinder had sufficient stores for another loading cycle.

Preparing for liquid oxygen transfer to the propellant tank

Thanks to the hard-won, acquired experience of the UCLA team and their commitment to training new members and holding to their proven procedures, they were able to conduct the second firing safely for an impressive finish that day.

The UCLA liquid rocket team poses before their liquid rocket after a second successful hot fire on the same day.

Initial data from both UCLA static firings of their liquid motor suggest that the 650 lbf nominal thrust motor outperformed expectations and will be ready for vehicle integration and flight by May 29, 2021. The UCLA team had reason to celebrate at the end of the day. The RRS was glad to be a part of UCLA’s continued campaign to fly liquid rockets that are competitive with any university team in the country.

For other universities interested in working with the RRS, please contact the society president submitting a Standard Record Form downloaded from our website,

president@rrs.org


Tank Blowdown Math

by Prof. Dean R. Wheeler, Brigham Young University


EDITOR’S NOTE

This posting is reprinted from the original article written March 13, 2019 with permission from the author. This article was intended for chemical engineering students to size relief valves for pressure vessels, but it applies well to amateur liquid rocketry as many use a pressure fed system to deliver propellants to the engine.

The PDF of this white paper can be found below.

https://www.et.byu.edu/~wheeler/Tank_Blowdown_Math.pdf

The RRS has several members engaged with liquid rocket projects. An important part of analyzing the performance of those systems is the pressurization system that drives the propellant into the engine. The tank blowdown problem is useful to designing the system and estimating performance. This derivation goes through the thermodynamics of the general tank blowdown problem and should be a useful starting point for a pressure-fed liquid rocket project.


INTRODUCTION

This document provides a mathematical model for computing the rate of expelling gas through a small orifice or nozzle attached to a tank. Furthermore, two models are described for how fast the tank will depressurize. Related material on compressible flow can be found in fluid mechanics and thermodynamics textbooks and web pages.

Figure 1 shows the tank and associated nozzle. The narrowest diameter of the flow path in the orifice or nozzle is known as the throat region. The tank and throat regions are described with their own sets of equations.

Provided the tank is large and the throat is small, it will take many seconds to empty the tank and gas velocities in the main part of the tank will be much smaller than the speed of sound. This means that gas pressure, temperature, and density in the tank will be spatially uniform, though they will be changing in time. Thus, we describe the tank using a transient mass balance. One can compare this to a model in heat transfer known as lumped capacitance.

In the nozzle region however, gas velocity is large and there are large spatial variations in the gas properties. In addition, there is relatively little gas contained in the nozzle region. Thus, flowrate in the nozzle adjusts rapidly to match current conditions in the tank, making it seem as if the nozzle is operating at steady state. This approximation for the nozzle is known as quasi-steady state.

Figure 1: Schematic of a task with nozzle or orifice, allowing gas to exit. Italicized are variables that pertain to twokey regions. During blowdown every variable depends on time,

EQUATIONS OF STATE

The P, T, and rho variables in Figure 1 denote absolute pressure, absolute temperature, and density in the tank or the narrowest part of the nozzle or throat (denoted by an asterisk,*, subscript), respectively. Note that if tank pressure is given experimentally as a gauge quantity, it must be converted to absolute to be used in the equations below.

The first relationship between gas variables is given by an equation of state. The ideal gas law is a fairly accurate representation for air when pressure is less than around 10 atmospheres or 150 psia. It states that:

Figure 1: The ideal gas equation

where “V” is the volume of the gas, “n” is the number of moles, and “R” is the universal gas constant (8.31446 J/mol/K). With the introduction of the molecular weight, M (effectively 0.028964 kg/mol/K for air), and the substitution that density is mass over volume, rho = n M / V, the ideal gas law is changed to

Equation 2: Density calculated from the ideal gas equation

This equation could be applied separately to the tank variables or to the thrust variables.

TEMPERATURE AND PRESSURE DURING EXPANSION

The second important relationship comes from figuring out what happens when gas in the tank or nozzle expands. When a gas expands, its internal energy is used to perform work on the surroundings, and the gas therefore tends to cool off. If the gas expands slowly, there is time for itmto absorb hest from its warmer surroundings and the expansion is essentially isothermal, meaning the temperature stays at its initial value or that of the surroundings.

On the other hand, if a gas expands quickly its temperature will drop dramatically. This is called adiabatic expansion, where adiabatic means no noticeable heat transfer from the surroundings (i.e. the walls of the tank). In adiabatic expansion, the pressure drops more rapidly than it would for an isothermal (slow) expansion. Adiabatic expansion could haolen inside the tank if it is emptying rapidly, but this depends on the relative sizes of thr tank and nozzle. On the other hand, adiabatic expansion certainly occurs when a gas moves from the tank through the nozzle region. In other words, here the gas is moving quickly and therefore expanding quickly.

The thermodynamic relationships for pressure and temperature for reversible adiabatic expansion of a constant heat capacity ideal gas are:

Equation 3A: Adiabatic pressure and density relationship
Equation 4A: Adiabatic temperature and density relationship

where the subscript, “o” indicates the initial state of the gas before the expansion started. This means if we know how the density is changing from an initial state to some later state, we can compute P and T as well. In the case of the nozzle, we apply the above equations as the gas travels between the tank and the throat. In the case, they become

Equation 3B: Adiabatic pressure and density relationship between tank and throat regions
Equation 4B: Adiabatic temperature and density relationship between tank and throat regions

The parameter, “gamma” , is the dimensionless ratio of specific heats ( gamma =. Cp / Cv ), and by statistical theory of gases, gamma = 7/5 = 1.4, for low temperature diatomic molecules, nitrogen (N2) and oxygen (O2) and so that value is used here.

CHOKED FLOW

Next, we need to determine the gas density in the nozzle when the tank is at a specified conditions. Recall that that the nozzle is treated as if it instantaneously responds to whatever state the tank is in. A fuller discussion of the nozzle flow equations can be found in other sources like textbooks that cover ideal compressible flow in nozzles.

Choked flow means that the flow is exactly at the speed of sound in the throat region. A higher speed cannot be achieved in the throat, regardless of upstream or downstream conditions. Thus, choked flow acts to limit how much gas flow can pass through a given size orifice, This is the reason why pressure relief valves on tanks must be properly sized to accommodate sufficient flow.

Choked flow happens for a large pressure drop across the nozzle or orifice, specifically if the upstream tank pressure meets the following condition relative to atmospheric pressure downstream from the nozzle:

Equation 5: Choked flow condition

Equation 5 is the origin of the rule of thumb or approximation that choked flow occurs for upstream pressure that is more than twice the value of downstream pressure (absolute). If the tank pressure drops below this limit, the speed of gas in the throat is subsonic, and less gas will flow than in the choked flow regime. The solution to subsonic flow in the nozzle is complicated and is less important to know because it is at the end of the tank’s discharge when pressure is low, and so will be neglected here.

The solution to choked flow in the throat region follows a simple relationship, derived from energy and mass balances:

Equation 6: Throat to tank density ratio

This can be substituted from Equation 3B and 4B to determine pressure and temperature in the throat in terms of tank conditions.

For choked flow the throat velocity is exactly the speed of sound, which is what makes it easier to analyze. For ideal gases, speed of sound, c, is determined solely by temperature. Thus, we can relate throat velocity to throat temperature, and in turn to tank temperature:

Equation 7: Speed of sound at the throat

For example, if T_tank = 294 Kelvins, then c_o = 314 m/sec for air.

MASS FLOW RATE

Now we can determine the mass flow rate, “m_dot”, through the nozzle or orifice. This comes from the following standard relationship, applied at the throat, because that is where conditions are known:

Equation 8: Mass flow,rate at the throat

where “A_*” is the throat cross-sectional area given by

Equation 9: Area of a circle

and where “d_*” is throat diameter.

Dimensionless parameter, Cd, in Equation 8 is the discharge coefficient, accounting for friction between fluid and walls and a phenomenon known as vena contracta. In essence, Cd, is needed in Equation 8 because the effective area for fluid at speed, v_o, is somewhat smaller than actual throat area. Cd would be equal to 1.0 for a perfect (frictionless or thermodynamically reversible) nozzle: in practice for a smoothly tapering nozzle it might be as high as 0.98, while for a sharp-edged orifice it might be as low as 0.60. Anything that causes separation of flow from the nozzle wall or increases frictional contact will decrease Cd.

Making the appropriate substitutions into Equation 8 leads to an equation for mass flow in terms of readily determined quantities:

Equation 10: Mass flow rate in terms of readily determined quantities

Frequently in industrial situations, mass flow rates are expressed instead as volumetric flow rates corresponding to a gas at a standard temperature and pressure (even though the gas is not actually at that temperature and pressure). For instance, a mass flow meter used for gases may express mass flow as standard liters per minute (SLPM) or standard cubic feet per minute (SCFM). In other words, even though m_dot (mass flow) is the key value being measured, it is expressed as

Equation 11: Standard volumetric flow and mass flow rate

which requires knowing what rho_std value is programmed by the manufacturer into the flow meter. This can be determined from the ideal gas law, given specified P_std and T_std values. As an example, the American manufacturer, Omega, assumes a standard temperature “T_std” of 70 degrees Fahrenheit (294.26 Kelvins) and a standard pressure “P_std” of 1 atmosphere which equals 14.696 psia (101,325 Pscals) thus by the ideal gas law, the standard density “rho_std” would equal 1.2 kg/m3 for air (molecular weight 28.97 g/mole).

Combining Equations 10 and 11 and the ideal gas law leads to

Equation 12: Combining Equations 10 and 11 for standard volumetric flow rate

where “c_std” is the speed of sound at the standard temperature:

Equation 13: Standard volumetric rate and mass flow rate relationship

Makers of valves and orifices may provide an experimentally determined size parameter known as flow coefficient, Cv. For gases this dimensionless parameter can be converted to Cd*A_* by

Equation 14: Discharge area relationship4 to valve coefficient (metric units)

The key design principles resulting from the above analysis are, provided tank pressure is large enough to generate choked flow, that (1) mass flow rate of a gas through an orifice is proportional to throat area and tank pressure and (2) flow rate does not depend on downstream pressure.

TWO MODELS OF TANK BLOWDOWN

Equation 10 gives the rate of mass loss from a tank at a given gas density and temperature. To determine how long it will take to depressurize the tank, we must do a transient mass balance on the tank. The ordinary differential equation for this is:

Equation 15: Change of mass in time

where “m_dot” comes from Equation 10 and “m” is the mass of gas in the tank. This in turn is:

Equation 16: Mass in the tank

where V_tank is the fixed tank volume. With these substitutions we get for the governing equation

Equation 17: Mass flow rate from the tank

To make things more manageable, let us create a discharge time constant called “tau”

Equation 18: Time constant for blowdown of a tank

where “c_o” is the speed of sound at the initial temperature “T_o” (i.e. at the beginning of blowdown)

Equation 19: Speed of sound at initial conditions

With this new time constant, Equation 17 becomes:

Equation 20: Mass flow rate change in the tank

The last thing to do before solving this equation is figure out what to do with T_tank. We have two options:

ISOTHERMAL TANK ASSUMPTIONS

Assume gas temperature in the tank does not change in time, based on blowdown taking a long time so that heat can be readily absorbed from the walls. Thus, T_tank = T_o. This leads to Equation 20 becoming

Equation 21: Tank density change in time

which can be separated and integrated to give the solution

Equation 22: Tank density as a function of initial conditions

where “rho_o” is initial density in the tank. We then convert densities to pressure using the ideal gas equation.

Equation 23: Tank pressure as a function of initial conditions

The equation tells us how tank pressure varies with time, for an isothermal tank and choked exit flow.

ADIABATIC TANK ASSUMPTIONS

Assume the gas cools as it expands in the tank, due to no heat transfer from the walls, based on the blowdown taking a short time to complete. Thus, T_tank is given by Equation 4A. This leads to Equation 20 becoming

Equation 24: Mass flow rate from the tank

which can be separated and integrated to give a solution.

Equation 25: Density of the tank as a function of time

We then convert densities to pressures using Equation 3A for adiabatic expansion.

Equation 26: Tank pressure as a function of time

This equation tells us how tank pressure varies with time, for an adiabatic tank and choked exit flow. The tank temperature can likewise be predicted from Equation 4A.

Equation 27: Tank temperature as a finction of time

COMPARISON OF THE TWO MODEL ASSUMPTIONS

The isothermal and adiabatic models of tank blowdown can be considered two extremes, with the correct answer (i.e., with the true amount of heat transfer) lying somewhere in between them. Figure 2 shows an example of the respective blowdown curves (Equation 23 and 26). As noted previously, adiabatic tank conditions lead to more rapid pressure loss than do isothermal conditions.

The curves predict that the tank will have lost 80% of its original pressure at a time in the range of 1.3*tau < t < 1.6*tau. This shows the value of evaluating the variable, tau, to get an approximation of the time it takes to depressurize the tank.

Figure 2: Comparison of isothermal and adiabatic blowdown curves.