MTA Launch Event, 2021-10-16

by Bill Claybaugh and Dave Nordling, RRS


This firing report will be the first in a series of three articles posted on RRS.ORG. This report will cover the launch event and preparations over many days made by RRS member, Bill Claybaugh. As the attending pyrotechnic operator for this firing event, I have summarized this work for the benefit of our readers with the permission and oversight of Bill.

Bill Claybaugh has been planning to build, load and launch a large 6-inch solid motor for many months and the first attempt had finally come to pass at the RRS Mojave Test Area (MTA) over the span of almost a week starting Tuesday, October 12 and culminating in a launch on Saturday, October 16, 2021. He had studied this project very carefully and built a great many new parts and tools from his home in Colorado. The scope of this project is quite extensive and the larger goal was to enable larger solid motor building by other members of the RRS at the MTA. The 6-inch motor was just the first in what will hopefully be a growing series of similar and larger scale solid motors.

Bill Claybaugh’s description of his six-inch rocket from his Flight Readiness Review presentation.

The predicted performance of this 6-inch single grain motor was 1350 lbf of thrust for a duration of 8.35 seconds which was expected to exceed 70,000 feet; well above the RRS MTA’s standard 50,000 foot altitude waiver. This “P” sized solid motor in this vehicle required an FAA Certificate of Authorization (COA) for this flight on the prescribed dates during daylight hours. The submission of Monte Carlo simulations of the trajectory (splash analysis) were graciously performed by Chuck Rogers (author of the RASAero II software) and a necessary part of the process to verify no significant concerns for impacting nearby populated areas or structures. Also, the FAA Class 3 rocket waiver that was granted would require the launch team to contact the relevant air traffic control 15 minutes in advance of the intended launch for final permission to proceed. A separate article discussing this subject in more detail will be coming soon.

The rocket had two streamers for a recovery system which were intended to be sufficient for easier spotting of the rocket in descent rather than provide a soft landing.

Many members of the society participated in this project over the several days needed to prepare and conduct the mixing, pouring and casting process. RRS members Dave Crisalli and George Garboden lended their time and expertise in solid motor building which led to a stellar finished product on Thursday. Several of Bill’s family and friends attended and supported the preparations for launch.

Bill Claybaugh’s four-finned rocket with an end view of the four-fin 6-inch single-grain motor loaded and ready for the nozzle installation. RRS president, Osvaldo Tarditti, talks with Bill on the morning before launch.
The forward and aft views of the nozzle assembly of the Claybaugh six-inch rocket.
Bill Claybaugh holds his payload system without the fiberglass long-ogive nosecone cover.
Pictures of the different parts of the pneumatic separation system and payload.
Ed Wronsky finishes the mating of the payload on top of the single stage solid motor checking the alignment before preparing to move the rocket to the launch pad.

Given the size of the 6-inch rocket, Bill designed and built a T-slot type of launch rail with a 24-foot length on an aluminum truss structure. The system was designed to be deployed in a green-field site and easily assembled by a small team of people. There were some challenges in getting the design to work but through the combined efforts of those at the site during the afternoon and early evening on Friday, the erecting and loading process was safely completed. Susan and Ed Wronsky both had a lot of great suggestions about getting the right placement of the come-alongs to bring the launcher up to a sufficient angle to secure it by the chains and strap anchors around the pad.

The new launch rail system will be the subject of a separate article coming later on RRS.ORG. Design improvements and substantial changes are being planned such that the next launch event will have an easier time in raising and lowering this important asset for the launching of larger rockets from the MTA.

Testing of the erecting process took place into the early evening by headlights. These operations provided valuable information making launch preparations the following morning far simpler.
Bill Claybaugh, Mike Pohlmiller and Ed Wronsky secured the 6-inch rocket by two bellybands in flyaway railguide system.

During the first launch operations of the rocket, the wireless telemetry wasn’t receiving signals. After restarting the computer and replacing the nosecone, the pyrotechnic charges in the recovery system accidentally fired due to a short. The payload system was removed, inspected and replacement pyrotechnic charges installed. After protecting the terminals from a similar short during final installation of the payload and nosecone, the telemetry system was working and the launch could proceed.

The nosecone being replaced after a quick test of the payload system.
Bill’s 6-inch rocket on the rails and secured for launch.

The launch event coincided with the launch operations of our neighbors’ (FAR). We were in constant communication to assure everyone was under cover at the proper times. The weiather was nearly ideal with very low winds the whole day. After road and air checks were completed, we prepared for launch.

Bill Claybaugh prepares for firing with RRS president, Osvaldo Tarditti, amd others ready to film and photograph the launch.
Still captured from the launch footage showing the rocket clearing the tower.
Last still picture of Bill’s 6-inch rocket before going out of view of the camera.

The initial launch was swift and powerful as the motor ignited and came to full thrust leaving the launch rail. The rocket canted to the northeast opposite the intended direction of the launch rail and the vehicle appeared to corkscrew as the motor burned to its full duration before going out of sight. The recovery system appears to have fired early as one of the streamers and the entire payload module fell back to the northern side of the MTA. The spent rocket motor casing has not yet been recovered. Bill was able to bring back the payload segment for inspection at the MTA while others continued the search for the rocket.

Bill disassembles the recovered payload system after its short descent back to the ground.
Both pyrotechnic separation charges had fired.
The antenna snapped off and was not found.
Recovered flyaway railguides showed signs of recontact from the tail fins from the sharp tears and rips seen. This is a common occurrence with flyaway railguides and they can be refurbished for the next flight.

Based on review of video footage, it appears the sudden turn uprange occurred at around 100 feet and took less than 1/4 second.  The current thinking is that the separation system depressurized, producing the side-thrust that caused the sharp turn after leaving the rail. It is assumed the telemetry loss of signal (LOS) was a result of the antenna snapping off during this sudden turn. LOS occurred at 119 feet and 425 ft/sec. About 0.25 seconds later, the payload can be seen starting to fall away from the rocket which can only occur if the system is depressurized. The payload was recovered about 300 feet from the launch tower and on the ‘new’ azimuth.

After the initiators fire–and both were fired–it would be expected that applying pressure to the quick-disconnect (QD) fitting would:

(1.) NOT result in the four retention pins extending, and,

(2.) would cause venting through the diffusers. 

That is, the burst disk is supposed to be punctured due to the piston driving the hammer through it when the initiators fired and any gas generated in the system is vented past the burst disk and through the diffusers.

The recovered flight hardware instead extended all four pins, did not vent through the diffuser, and did vent through the outlet reserved for the hot initiator gases.  This means that the burst disk was not opened and pressurizing gas was somehow leaking into the hot gas circuit.  The image below of the burst disk shows its condition as found upon opening.

Burst disk valve distorted but not penetrated as designed.


Further disassembly showed that the O-ring seal separating the hot and cold gas circuits around the hammer that penetrates the burst disk appeared damaged from heat. That seal damage was allowing the cold gas to escape into the hot gas circuit and then vent. Further, the O-ring prevented hot gas from getting to the subject O-ring around the piston that drives the hammer through the burst disk was in two pieces and showed clear evidence for melting at the edges. Thus, when the dual-redundant initiators fired, the piston O-ring failed (or had previously failed, although it was undamaged when installed) which allowed hot gas to leak past the piston (which nonetheless hit the burst disk hard enough to dent it but not tear it) and to damage the O-ring separating the hot-gas and cold-gas circuits in the valve. These two damaged O-rings then allowed cold gas to vent via the hot gas circuit, resulting in the payload seperating from the rocket.

Naturally, none of these failures ever occured in previous ground testing.

Wind shear was considered as a cause for the sudden change in vehicle direction witnessed during launch right after clearing the rail. Even in calm wind conditions on the ground, there have been past launch events at the MTA which have had sharp unseen discontinuities in the wind profile causing serious perturbation of the flight path in a rocket flight. This potential cause can not be fully excluded, but it is thought to be unlikely..

The venting of the hot and cold gas _may_ have caused the sudden pitch over as seen in video footage. As of now, this is being carried as a working hypothesis.  However, none of this explains why the initiators apparently fired a few fractions of a second after lift-off.

The telemetry data will soon be downloaded from the ground station to see if there was any indication of the beginning of this sequence of events. Because the ground station showed loss of signal (LOS) at 119 feet, and that LOS appears to have been the result of the antenna snapping off in the course of the sudden pitch change. There might not be any recorded data of the relevant accelerations or rates from the ground station.

This report will be updated as new information becomes available.

Examining the launch rail and supporting cables before the planned lowering.
Former RRS member, Kevin Sagis helps in gradually releasing the come-along chain bringing the heavy launch rail back to horizontal as the rest of the team managed the straps.

In conclusion of that day’s launch event, with the recovered parts from the rocket payload examined and packed for shipment back to Bill’s home, the remaining team worked to carefully lower the launch rail back to horizontal using the reversed process used to successfully and safely raise it. The launch rail support legs were left at the MTA as Bill and Mike Pohlmiller were going to consider a new design approach using the same T-slot backbone. Although there was no evidence of the rocket hanging up on any discontinuity, some repairs of the interconnections between the three segments should allow the combined rail path to be more straight.

The RRS is grateful to the many members and participants we had over those several few days. It was a big success despite some significant challenges and disappointment in the results. The project was designed to be a pathfinder to subsequent large solid motor projects and we expect the next motor build and improved payload system design in the new calendar year, 2022.


August 2020 virtual meeting

By Dave Nordling, Reaction Research Society


In the absence of our secretary, I took a few notes from the meeting. This is what I recorded. Contact the RRS secretary for updates and corrections.

The Reaction Research Society held its monthly meeting by teleconference on August 14, 2020. Our monthly meetings are always held on the 2nd Friday of every month. We’ve had a lot of success with holding our meetings remotely and we will likely continue for the next coming months to continue our commitment to safety in light of the pandemic. Our membership is in regular contact with our community which has allowed us to promote and hold events including our first launch at the Mojave Test Area (MTA) on July 25, 2020. You can read the details in the firing report posted on this website.

Our members are doing well and thus far no one has reported being infected with COVID-19 which we hope continues to be the case. Frank is in regular contact with the Los Angeles Police Department’s (LAPD) Community Safety Partnership (CSP) but under current circumstances, the next school event may not be until next year. Options are being considered on how to continue our educational programs while maintaining social distancing.

The August 2020 RRS meeting held by teleconference.

REVIEW OF THE 7/25/2020 LAUNCH EVENT OPERATIONS

The first topic was the recent launch event we held on July 25th at the Mojave Test Area for the first time since the start of the pandemic. We had some difficulties in operating under the summer heat (106 Fahenheit at the peak) but this is nothing unusual for this time of year. Many of us were well prepared for the hot sun with our hats, sunscreen and iced beverages and chilled water. We also did a good job of watching out for each other. Still, the heat was responsible for leaving all but one of the micrograin rockets downrange. It also underscores the importance good planning, coordination and putting safety over all other considerations. We had several mis-fires which we were able to resolve, but maintaining discipline during the event proved to be a larger challenge. The launch protocols will be explained more thoroughly in the next safety briefing. The meeting highlighted that every member and pyro-op attending the event holds a joint responsibilty for the safety of all and it starts with self-discipline and patience by all.

Getting the beta rocket ready in the launcher on 7/25/2020 and setting the camera

We also discussed proper protocols such as announcing the pyro-op in charge well before the event and the necessity of providing detailed information about the intended operations to the pyro-op in charge in advance. Most of the planned projects were well understood as they were micrograin rockets and the previous hybrid rocket attempted at the last launch event.

DATA REVIEW OF THE STANDARD ALPHA FLIGHT OF 7/25/2020

The only micrograin rocket to be recovered from the launch event of 7/25/2020 was the standard alpha with plain steel nozzle. John Krell has been developing progressively better and more powerful avionics payloads designed to fit the narrow confines of the RRS standard alpha payload tube. John was able to spot and recover one of his payloads and process the flight data captured that day. The avionics payload was intact after being extracted from the desert floor including the solid-state data chip. John was able to recover the data and accurately reveal the huge acceleration of the RRS standard alpha with unprecedented accuracy. A peak acceleration of 114 G’s was recorded at roughly 0.3 seconds just before tail-off and burn-out at 0.4 seconds from launch. I was able to screen capture his plot below.

John Krell’s presentation of the data from the one recovered alpha ( to date).

The second plot shows the velocity derived from the accelerometer readings in the half-second which captures burnout at 0.4 seconds. Burnout velocity was measured at 670 feet/second which is consistent with prior data and trajectory predictions. The alpha is subsonic but travels at substantial speed from the swift acceleration. Given the high air temperature that day, 106 Fahrenheit, the speed of sound was 1165 ft/sec. The altitude of burnout was determined to be 130 feet which is consistent with prior flight data and high speed video footage.

Trajectory plot of the standard alpha flight from 7/25/2020

The third plot was made for the whole flight of standard alpha from the 7/25/2020 event from launch to impact at 35 seconds. Given the roets were impacting 2000 to 3000 feet downrange, the sound delay matches with the time to impact witnessed in the observation bunker. The maximum altitude was just over 4,400 feet based on the barometric pressure measurements using the 1976 standard atmosphere model. Base atmospheric pressure reading at the start of the flight shows the elevation of alpha launch rail platform is 2,048 feet.

Trajectory of the standard alpha flown on 7/25/2020

John Krell has really accomplished something with these custom avionics packages. He has been mentoring some of our other RRS members and the society encourages other members to build and fly their own payloads to spread the knowledge.

John Krell and Bill Behenna discuss avionics payloads

The society hopes to recover the other two alphas and the beta for further data analysis. Both of the unrecovered alphas from this last launch event had ceramic coated nozzles which should not erode. This should result in a more ideal performance as the throat area will not open up. The actual effect of this design improvement can best be assessed with recorded flight data. Also, we hope to compare the trajectory of the four-foot propellant tube with the standard length. Lastly. if the beta is recovered with recorded flight data, we may be able to assess its performance in unprecedented detail. The society hopes to report this flight data soon.

IMPROVEMENTS TO THE NITROUS OXIDE FILL/DRAIN MANIFOLD

The failure to launch the second build of the hybrid rocket was discussed at the August 2020 meeting. After discussing the launch procedures and corrective actions followed during the attempt to launch the nitrous oxide hybrid at the MTA with Osvaldo (the Level 1 pyro-op in charge) and racing experts at Nitrous Supply Inc., Huntington Beach, California, the cause of the fill valve’s failure to open became clear.

nitroussupply.com

In the racing industry, these normally-closed direct-acting solenoid valves are commonly used to open the flow of stored nitrous oxide bottles against the full supply pressure in the storage bottle. These are called “purge solenoid valves” among racers because it is this solenoid valve that opens the flow of nitrous oxide which displaces or purges out the air in the engine lines during the race. Buying these 12-volt DC high pressure solenoid valves from racing suppliers is much cheaper given they are made in greater numbers for the racing industry. (~$120 each versus $400+ each from reputable solenoid valve manufacturers).

In researching common designs for normally closed (NC) solenoid valves, the excessive heat of that day simply created too much inlet pressure against the internal valve seat for the electromagnetic solenoid coil to overcome and open the flow path. 1000 psig is likely the limit to reliably open these valves according to advice given by Nitrous Supply Inc. who has decades of practical experience at racing tracks around the country using purge solenoid valves for an application nearly identical to the needs of hybrid rocketry fill and drain operations. The ambient temperature at the MTA on launch day was creating a bottle temperature of 1400 psig accordling to the bottle pressure gauge and the separate pressure gauge in the manifold when the bottle was opened. This is well above the 900 psi recommended pressure range seen by marking on the gauge. The bottle, valve body and fittings are rated for these higher pressures, but opening mechanism of the solenoid valve was not.

A color-coded example of direct-acting normally closed solenoid valve is below. Blue shows the high pressure fluid path which is holding the seat down along with some assistance from an internal spring only for low inlet pressure conditions. With current applied to the electromagnetic solenoid (Orange), it pulls up on the moving armature (in red) which then allows the fluid to slip past the seal and through the flow control orifice when commanded open. Only a slight amount of movement is necessary to lift open the valve. However, if the fluid inlet pressure is too great, the solenoid can not provide enough force to lift and open the seal, therefore the valve stays shut.

Example of a direct-acting normally closed (NC) solenoid valve courtesy of M & M International (UK) Limited with color added to distinguish key parts.

To understand the relationship between pressure and temperature of the nitrous oxide you must consult the vapor pressure curve for nitrous oxide. This set of data points spans between the triple point and critical point of any pure fluid. NIST provides accurate data to generate such a curve.

webbook.nist.gov

nitrous oxide (N2O) liquid state properties, HTML5 table output from Web-book NIST.gov website
Nitrous oxide (N2O) vapor phase properties, HTML5 table output from Web-book NIST.gov website

The critical point of any pure fluid is where the distinction between gas and liquid phases disappears. This is not necessarily hazardous but it does mark a fundamental change in fluid behavior. The critical point of nitrous oxide (N2O) is 1053.3 psia and 97.6 degrees Fahrenheit according to Air Products company literature. This means the nitrous oxide conditions in the bottle at the launch (1400 psig as read on the gauges with an fluid temperature of 106 Fahrenheit or more) was well in the supercritical range, but again, this is only hazardous if the pressure vessels and plumbing connections aren’t able to safely contain the pressure. If the solenoid valve could have been opened, the pressure drop would have returned the supercritical fluid back to normal conitions and would flow dense liquid into the rocket when the fluid naturally chills down from the expansion.

Both the bottle pressure gauge and the manifold pressure gauge read excessively high on that hot summer day.

Keeping the bottle pressure below 1000 psia means controlling the external temperature of the bottle to a lower temperature. Below is a tabulation of state points along the vapor pressure curve for nitrous oxide (N2O) for common ambient temperatures. You can see that small shifts in ambient temperature can greatly affect the vapor pressure of the pressurized liquid. Keeping nitrous oxide under pressure is the key to retaining its denser liquid state. As long as the tank pressure is above the vapor pressure at that fluid temperature, you will have a liquid phase in the tank. If the pressure on the fluid drops below the vapor pressure, the liquid will begin to boil away.

  • 30 F, 440.05 psia
  • 40 F, 506.63 psia
  • 50 F, 580.33 psia
  • 60 F, 661.71 psia
  • 70 F, 751.46 psia; liquid density 48.21 lbm/ft3, vapor density 0.1145 lbm/ft3
  • 80 F, 850.46 psia
  • 90 F, 960.09 psia
  • 97.6 F, 1053.3 psia; density 28.22 lbm/ft3, CRITICAL POINT
  • Molecular weight = 44.01 lbm/lb-mol
Vapor curve for nitrous oxide over ambient temperature ranges

At first, it was thought that there wasn’t sufficient current from the lawnmower lead-acid battery we use. The summer heat can cause batteries to fail, but even after switching to a car battery, the failure to open was the same. Having a 12-volt solenoid requires greater current to actuate the solenoid valve, but it is a common standard for automotive grade parts which can be less expensive yet reliable. A current draw of 15 Amps over the long cable runs of a few hundred feet can be taxing to the firing circuit battery. This was not the cause of the problem, but it is a regular concern making sure sufficient voltage and current is available to both ignition and valve control.

To exclude outright failure of the solenoid valve, Osvaldo brought the unit home, allowed it to cool to room temperature then dry-cycled the valve from a battery to see if it still actuated. This simple test was successful and the filling valve in our nitrous oxide manifold continues to operate. At the next launch attempt, we will be prepared to chill the nitrous oxide supply bottle with an ice bath if necessary as was originally suggested at the prior launch event. Keeping the bottle pressure in an appropriate pressure range for fill operations is dependent on controlling the fluid temperature (60 to 90 F) under extreme heat or cold environments.

In researching purge solenoid valves, a second 12 VDC normally-closed valve was found and purchased. Nitrous Supply Inc., was out of purge solenoid valves but offered many alternative suppliers in the Los Angeles area. After some searching, I selected a high flow purge solenoid valve sold by Motorcycle Performance Specialties (MPS) Racing in Casselbury, Florida, for the purge solenoid valve used for venting our nitrous oxide manifold. The control panel is already equipped with the second command channel to open the vent from the blockhouse should it be necessary in launch operations. A schematic illustration is provided in this article.

mpsracing.com

Normally-closed 12 VDC purge solenoid valve from MPS Racing in Florida used for nitrous oxide applications including car and motorcycle racing.

The previous drain solenoid valve equipped with the nitrous manifold I bought was not deisgned for the full bottle pressure in the manifold so it quickly failed during initial checkouts. A manual valve was used in its place to carefully bleed out the remaining pressure in the line after the main bottle valve was tightly closed. This second solenoid valve will be used for draining the nitrous in the event of a launch scrub. Although the Contrails hybrid motor already has a small orifice and vent tube at the head end of the nitrous tank to provide slow release of pressure buildup, it is better to have a remote option to quickly depressurize the vehicle if the need arises.

Fill, drain and firing circuit for a Contrails hybrid rocket motor

With some re-plumbing of the nitrous oxide manifold to include the new vent solenoid, a soap-bubble leak check would be needed to prove the system before use. Given the significant overhanging weight of two solenoid valves, it may be wise to mount both valves on a separate plate structure to avoid excessive bending loads on the bottle connection. Design changes like this will be considered in preparation for the next launch event.

PYROTECHNIC OPERATOR TRAINING SESSION BY FRIENDS OF AMATEUR ROCKETRY

Mark Holthaus of the Friends of Amateur Rocketry (FAR) organization is offering an online training session for those interested in becoming licensed pyrotechnic operators in the state of California. The event requires registration on the FAR website and a fee paid to FAR ($10) to attend this two-hour introduction to the licensing and application process to be held on August 26th.

Friends of Amateur Rocketry website for indicating interest in pyro-op classes

Amateur rocketry in California is controlled by the same laws governing fireworks which require licensing by a state exam. The application forms and guidelines are available through the Office of the State Fire Marshal in the state of California (CALFIRE).

https://osfm.fire.ca.gov/divisions/fire-engineering-and-investigations/fireworks/

This training course for pyro-op applicants is another example of FAR and the RRS partnering to help the cause of amateur rocketry. The RRS, FAR and Rocketry Organization of California (ROC) last year met to create a joint set of recommendations to help CALFIRE improve the definitions used to govern amateur rocketry when CALFIRE they were seeking input from rocketry organizations. It is to the mutual benefit of the whole rocketry community and the public that there be more licensed pyro-op’s in amateur rocketry to both increase awareness of state laws and improve the culture of safety in our hobby and professions.

This FAR training course only serves to provide applicants with basic guidance on how to begin the application process and prepare to take the examination. Members of FAR, the RRS, ROC and any other amateur or model rocketry organization are welcome to apply. Several members of the RRS have already applied as the society continues its campaign to grow our ranks of licensed pyro-op’s at all three levels.

Completion of this training course does not substitute for any part of the pyro-op application process set by CALFIRE. As each applicant is required to pay their own fees including fingerprinting, they must also provide five letters of recommendation from licensed pyro-ops at or above the level of license being sought. After this class, each applicant must formally request these letters from state licensed pyro-ops in writing. For a licensed pyro-op to offer a letter of recommendation to an applicant, they must be willing to endorse their skills, knowledge and character to the state of California based on their personal experience with that individual. This is done through active participation at launch events through rocketry organizations having licensed pyro-ops leading their operations. Apprenticing, studying and attentiveness are all ways that a pyro-op can get to know an applicant personally and thus build confidence that the applicant is ready to have the responsibility of being licensed in rocketry. A letter of recommendation is given solely at the discretion of the licensed pyro-op which means their standards and expectations may vary significantly from others. It is important to establish a working relationship with both the society and the specific pyrotechnic operator over several projects to demonstrate skills and learn best practices through active participation.

As the RRS has more licensed pyro-ops than FAR at this time, this training course will be successful if both organizations support it. Some of the RRS pyro-ops have already offered their support as this means more people will need to become active with the RRS and conduct their projects at the MTA.

ROCKET LABORATORY AT THE COMPTON AIRPORT

Keith Yoerg announced that there is a tentative plan to create a rocket laboratory in a hangar at the Compton Airport, Although, the hangar will be used from time to time to store or service light aircraft, there is a great deal of working space which will help the RRS continue their liquid rocket project already underway. Several members of the RRS are also active with civil aviation and are members of Chapter 96 of the Experimental Aircraft Association (EAA 96). The EAA has generously supported the RRS over the last two years and we hope to continue and expand this partnership.

NEXT EVENT AT THE MOJAVE TEST AREA

The RRS has been planning the next event at the Mojave Test Area which will be dedicated to repairing some of our facilities including the adjustable rail launcher damaged in solid rocket launch explosion in August 2019. The consensus at the meeting was that we should not to return to the MTA for a formal launch event until the seasonal temperatures decrease from the excruciating desert summer. October 3rd was selected for this work event, Our hope is the weather will be cooler and we can accomplish more on that day. We may also take some time to search for more rockets planted downrange from past launch events.

The RRS may also conduct a few static firings or even a launch if member projects are ready. All such proposed hot-fire and launch activities must be proposed to the RRS president and the selected pyro-op in charge for that day. Some of our member projects such as Wolfram Blume’s Gas Guzzler two-stage ramjet and my second-build of the high-powered hybrid rocket are both still works in progress and may be ready for the early October launch date. Larry Hoffing has been working on an improved solid motor chemistry which he may want to test at the MTA.

The RRS is available for private events before that time, but one must make their request to the RRS president as usual. Some have indicated interest in returning to the site for just a few hours to recover more rockets downrange. Its our policy that at least two members be present for any excursions to the MTA and the RRS president must be notified in advance.

IN CLOSING

Some topics were not able to be covered including the overview of the new RRS Constitution as it gets ready for administrative membership review. Also, facility improvement plans at the RRS MTA including new restroom facilities and blockhouse should be discussed.

The next RRS meeting will be held by teleconference on September 11, 2020 as it is unlikely we will be permitted to return to the Ken Nakaoka Community Center by then. We hope everyone continues to stay safe during these days of the pandemic and try to stay in touch as we are planning another event at the MTA for October 3, 2020.

If there are any questions, please contact the RRS secretary.

secretary@rrs.org


MTA launch event, 2017-07-22

The RRS hosted a launch event on Saturday, July 22, 2017, with the students of Jordan Downs, sponsored by the Los Angeles Police Department’s (LAPD) Community Safety Program (CSP) at our Mojave Test Area (MTA). This launch event was the final part of the educational program put on by the RRS. The event was very successful as we fired 10 student alpha rockets and one more alpha from LAPD.

RRS sign at the MTA entrance

It was a typically hot day (105 F / 41 C) for late July at our private test site the Mojave Desert, but everyone was well prepared. Some even brought umbrellas which was a great idea to stay out of the sun’s rays. The misting fan we bought from Home Depot seemed to work well in the observation bunker. Home Depot was also very kind to donate water misting bottles for this event which helped tremendously in keeping people cool. RRS treasurer, Chris Lujan, was also very well prepared for the event as he saved me with a cold water bottle just after launch. Looking after each other is what we do.

RRS VP Frank Miuccio talks with students from Jordan Downs

Larry addresses the Jordan Downs students at the MTA

Our pyro-op in charge was Dave Crisalli and he gave our safety briefing before we got started. The students were well prepared and seemed to get a lot from it. New RRS member, Alistair Martin was nice enough to film some of the briefing.

Alistair films the burn demonstration

We also gave a propellant burn demonstration after the safety briefing to give everyone an appreciation for the power of the chemicals commonly used in amateur and professional rocketry. I have a still of the sample composite grain below. I took a video of the composite burn and will have it posted on our YouTube channel very soon.

sample composite grain sitting in the cage

Larry and Osvaldo had already loaded the rockets the night before so we could get the event started as quickly as possible. The rockets were safely stored in our old blockhouse ready to go.

Each of the students had painted their rocket with a unique pattern and color scheme to better help identify them later. The photo below is from just after the build event.

Jordan Downs alpha rockets painted and ready

Dave allowed me to assist on the pyro-op duties including rail loading and connecting for firing. As promised, we worked quickly to call out each one as they were loaded in the rails. Dave and I worked very efficiently to get each one off swiftly and safely.

The LAPD rocket was the 11th one in the series. It had a few special features including a smoke tracer in the payload section and a tail-fin mounted camera.

LAPD’s alpha rocket

LAPD payload with red smoke tracker inside

LAPD’s alpha rocket, tail fin camera

The LAPD rocket was able to be recovered shortly after launch thanks to the smoke tracker. The nose cone wasn’t able to be recovered but the camera on the tail fin remained in tact. We have had good luck with one of these keychain cameras in the past. Although the camera imparts a spin on the rocket, the flight is very stable. Once the footage is downloaded, and depending on the quality, the RRS will post it on our YouTube channel. It should be a lot of fun to see (fingers crossed).

YouTube – RRS channel

The specific brand of smoke tracker used was “Enola Gaye”. Given the success of the flight, the RRS should certainly use more of this product in the future. There has been some discussion to increase the number of holes in the payload section to allow more of the smoke product to escape throughout the flight.

Dave Crisalli with the recovered LAPD rocket

Due to the summer heat, the students of Jordan Downs didn’t go downrange to search for their rockets after the launching was over. However, Frank was able to locate and recover (dig up) one from the event.

Frank in the Dosa Bldg. just before going out to search for rockets

The RRS thanks LAPD officers Acuna, Plascencia and Terrazas

The RRS is grateful to all of the parents and adults who supported the event with us. Also, the RRS is grateful to LAPD officers, Acuna, Plascencia and Terrazas, for their help in making this event a big success.

Osvaldo receives Cert of Recognition

University of Southern California (USC) and RRS president, Osvaldo Tarditti, were glad to receive a certificate of recognition from L.A. City Councilman, Joe Buscaino of the 15th district for putting on this event with the students of Jordan Downs in Watts. It is with gratitude that the RRS accepts the certificate and we hope to work again with the students of Jordan Downs and other groups in the city.

As for my own rocket which would have been the 12th alpha launched, an electrical problem with the timer forced me to pass on launch. Although each part of the circuit seemed to work individually when I tested them the night before, the fully integrated system failed the demonstration at the site. Working with Richard and with some more time, I can resolve the issue, improve the design a little, and fly the parachute system in the alpha at the next launch event.

Dave’s alpha parachute deployment system, still in work

UCLA was also at the MTA to continue their work on their liquid rocket project. UCLA proceeded after the Jordan Downs launch, but had an electrical problem which prevented their scheduled cold flow testing. UCLA hopes to reset their efforts and be back at the MTA for more testing in late August.

Chris, Richard and I discussed making some rocket candy (sugar/KNO3) at the MTA loading area, but it seemed that there wasn’t enough time to get things started. With most of the resources already on hand, we’ll wait for the next event for Chris to cook a small batch of this classic amateur rocketry compound for demonstration purposes.

If any one has any pictures or video of the event that they’d like to share on the RRS website. Please send them to me at secretary@rrs.org
Or comment to this posting below.

For more information on the RRS educational programs, please contact us at:
events@rrs.org

Also, if I have missed or misstated anything, please let me know. Our next monthly meeting will be August 11th at the Ken Nakaoka Community Center in Gardena, CA.
secretary@rrs.org