MTA Launch Event, 2021-12-17

by Dave Nordling, RRS.ORG


The Reaction Research Society held its last launch event of the year 2021 at the Mojave Test Area on Friday, December 17th. I was the pyrotechnic operator in charge. This was my first launch event as a Class 1 pyrotechnic operator although none of the activities this day involved a liquid rocket. We had four launches planned for that day. Two from Keith Yoerg, one from Wolfram Blume and one from Dimitri Timohovich. RRS members Wilbur Owens, Xavier Marshall and Bill Inman came to be spectators at this launch event.

Bill Inman at the RRS MTA on 12-17-2021

IMPROVEMENTS TO THE 1515 RAIL LAUNCHER

The first flight of the Hawk in late November revealed a concern about the stability of the 1515 rail launcher with heavier rockets. Although quite heavy in its steel rectangular tube construction, Dimitri and Keith used cinder blocks and sandbags to weigh down the legs of the base. This resulted in damage to several of the sandbags from the exhaust of the M-sized motor from the initial flight.

Flat steel plate with welded bolt
Flat steel plate added to the 1515 launch rail base for greater anchorage

A flat steel plate with a threaded rod welded to the center was connected to the bottom of the 1515 rail launcher to allow for more weight to the base and allow for more cinder blocks to be added for even more stability. New adjustable feet were added to the existing four threaded holes at the far points of the legs. Eyebolts were also bought to screw into the 3/4-10 holes in the pad to strap the base down if necessary.

The 1515 rail launcher with its new anchor plate held down by cinder blocks.

SECOND FLIGHT OF THE HAWK

The December 17th launch event was primarily for the second flight of Keith Yoerg’s massive 14-foot long, 8-inch diameter Jumbo Dark Star rocket made by Wildman Rocketry with a 98mm Cesaroni N2600 Skidmark motor. The launch was held on Friday to coincide with the anniversary of the Wright Brothers first flight..

The payload tube of the Hawk being prepared for launch on 12/17/2021.

The payload was something very special to the Yoerg family and to American aviation history. The payload was a few squares of cotton fabric from the right wing of the original Wright Flyer aircraft that made aviation history. This cloth was the actual material that flew in 1903.

An authenticated piece of American aviation history flies on the Hawk from the RRS MTA.

A similar piece of the cotton fabric used in the Wright Flyer was sent with the Mars Ingenuity helicopter aboard the Mars 2020 mission being part of the first aircraft flown on a foreign world.

Mars Ingenuity helicopter at Jezero Crater on the surface of the Red Planet in April 2021

It was amazing to fly a similar piece of history at our humble launch site for our members to enjoy on the anniversary of manned flight.

After securing the payload and verifying the recovery systems were in proper working order, the Hawk was taken to the launch pad and erected for flight.

The Hawk slid into the 1515 extrusion rail by its rail buttons.
Manually erecting the Hawk took several people to carefully raise and push the stopping pin once the rail was near vertical.
Keith checking out the wireless data system.
Dimitri connects the igniter circuit into the society’s new Cobra wireless firing system
Keith Yoerg and Xavier Marshall of the RRS pose with the Hawk before its second flight on the Wright Brothers anniversary.

Before the countdown, Keith gave a very moving speech with his mother, Janette Davis, present in the observation bunker.

118 years ago today, on the sandy windswept dunes of Kitty Hawk, North Carolina, my Great-Great Granduncles Orville and Wilbur Wright achieved the first powered, heavier-than-air flight of a manned aircraft. A few small pieces of fabric from that historic airplane are ready to take flight again today, from the sands of the Mojave Desert, aboard ”The Hawk” an 8-inch diameter 14-foot fall rocket Honoring Aviation, the Wrights, and Kinetics. In 1903, this fabric reached a max altitude of 10 feet at a max speed of 10 feet per second. Today, that same fabric is expected to reach an altitude of over 7,000 feet with a max speed of 791 feet per second (or Mach 0.7).

We’re now ready to start the countdown. The sky is clear, the road is clear.

Flight 2 of “The Hawk” is launching in 5… 4… 3… 2… 1…

Rail-mounted camera caught a few frames before the N-motor destroyed the lens.

The second flight of the Hawk was close to predictions reaching over 7,800 feet in altitude and 742 feet per second. The Hawk with its drogue and main parachutes working properly was fully recovered. Keith got telemetry data and provided screenshots of the results below.

Telemetry data from the second flight of the Hawk on 12-17-2021

Beckie Timohovich was a big help in the recovery efforts and bringing back the hardware to the launch site. She also makes really good Alaskan caribou chili which we all got to enjoy at lunch in the Dosa Building.

The ratcheting extraction tool for removing alphas from the ground.
The Hawk returned safely to the ground with the historical payload intact. Wireless and onboard data was recorded and video footage from the ground and on the vehicle was recorded.

The 1515 rail launcher with its heavier base worked well and did not shift although the straps were singed by the hot exhaust and seemed to be superfluous. The parachute system on the Hawk deployed well and brought the vehicle down in tact. Most importantly, the family heirloom flown as a payload was returned to safekeeping.

The 1515 rail after launching the Hawk. Unfazed and ready for another pounding from Wolfram’s K-sized booster motor

Keith is considering his next flight of the Hawk. One idea is to fly an even larger motor if an O-sized motor will fit in the existing 98mm mount. The goal being to go faster and break the speed of sound and fly even higher. Keith was also pondering adding a second stage to the Hawk. We hope to learn his next plan in the new year as we hope to have another launch event in January 2022.

TWO MICROGRAIN ALPHA ROCKETS

We flew two alpha micrograin rockets. One by Keith Yoerg, one by Dimitri Timohovich. Each had a payload built by John Krell. These were the first zinc-sulfur rockets to be loaded and flown by Keith and Dimitri which although both them have been active members of the society for years, this experience served to initiate them into the RRS.

Dimitri was first to load his blue nose-to-red finned rocket and fire it while Wolfram Blume completed his assembly and preparations for the second flight of the Gas Guzzler two-stage rocket with a water ballasted ramjet upper stage. Keith Yoerg’s alpha with the bright pink nosecone and fins was the second of two alpha flights, Like with the Hawk before it, the RRS used our Cobra wireless firing system with the alpha rockets.

Dimitri Timohovich loads the powdered micrograin into the propellant tube using gentle vibration to release any air pockets.
Keith finished with the loading of powdered propellant, installs the nozzle into his alpha.

https://www.cobrafiringsystems.com

Keith edited the footage of both alpha flights into one compilation on YouTube. See link below:

John Krell’s Adalogger design custom built for the tight confines and high acceleration of Keith’s RRS standard alpha.
Keith prepares to load his alpha into the box rails.
Still capture of Keith’s alpha streaking nearly straight up in nearly calm winds that day.
Keith Yoerg’s first alpha rocket.

A few days after the MTA launch event, John reported a summary of the results from the two different instrumentation payloads. His emails are paraphrased below.


On 12/17/2021, two Alpha rockets were launched. Both were instrumented with high speed flight computers. Dmitri’s Alpha (blue nosecone) carried an original Alpha Datalogger on it’s third flight and Keith’s Alpha (pink nosecone) carried a newer Adalogger design on it’s second flight.

John Krell had two data logger designs. the original data logger design was flown on Dimitri’s alpha.

The bad news first. The Adalogger SD card socket broke during its first launch. I did not catch this issue prior to this launch. The SD card fell out of its socket during the initial acceleration and no flight data was recorded from Keith’s alpha, The next design update will include a nylon post to prevent SD card ejection. Keith’s Alpha also incorporated a semi-soft shock absorption mounting. It didn’t work as well as planned, but it does show potential with two modifications. Damage to the Adalogger system was minimal and repairable. 

9-volt battery mounted in the aluminum nosecone of Dimitri’s RRS alpha.

Dmitri’s Alpha produced significant new data during the burn for a micrograin rocket. The thrust was relatively smooth and constant compared to the previous three Alpha launches that carried flight computers and returned data. Absent were the large acceleration bursts during the burn. (See attached graph)

Acceleration plot of Dimitri’s alpha flight.

Also recorded was the impact. The impact duration was measured at 16 milliseconds. This is the shortest impact duration recorded for an Alpha. A prior impact duration of 18 milliseconds produced a deceleration of 716 G’s. This impact deceleration should exceed that value.

Further analysis of the data is required to determine a value. A picture of Dmitri’s rocket in the ground prior to extraction will be helpful.   (Photo was later provided.)    

Motor burn duration           0.408 seconds

Maximum Acceleration       103.95 G’s at 0.304 seconds

Maximum Velocity               676 ft/sec, Mach 0.6 based on integrated accelerometer readings  

Altitude at Burnout              ~138 ft    

Maximum Altitude                4,307 ft AGL by barometric readings

Terminal Velocity                  463 ft/sec, Mach 0.411  based on barometric readings

My video records of Keith’s Alpha show a shorter burn duration equating to a higher acceleration and velocity. The altitude should also be higher with the shorter down range distance. 

Dimitri’s alpha with its red paint at the aft body coming off from the intense heat of the micrograin burn. Dimitri’s rocket was found significantly further downrange than Keith’s but on the same heading

The still pictures at the end furnished the information necessary to estimate the deceleration at impact. Keith’s alpha’s penetration depth of approximately 3 feet 10 inches correlates to a deceleration rate of 680 to 720 G’s in a span of 18 to 20 milliseconds. Dimitri’s Alpha penetrated approximately 3 ft 8 inches into the ground in 16 milliseconds equating to ~900 G deceleration rate. Wow!!! 


The main objective was to give all of our active members experience with micrograin rocketry. Although rarely practiced outside of the society, it is considered to be something of a rite of passage and also serves as valid experience with the unlimited category of rocketry. This event gave Dimitri and Keith this experience which will help them as they advance as pyrotechnic operators.


SECOND FLIGHT OF THE GAS GUZZLER RAMJET

Wolfram Blume brought his second build of the Gas Guzzler rocket to the MTA for a December test flight. The same booster section with an Aerotech K-motor was flown. The ramjet was rebuilt and was flying a 3/4 load of water in the gasoline tank to have a representative payload weight including any possible sloshing that might occur.

Wilbur Owens discusses the ramjet operation with Wolfram Blume. This forward view is without the forward cowl. In the background is a graduated cylinder for precisely metering the fuel load into the ramjet.
The forward end of the ramjet with its annular cowl and forward spike as it nears final assembly.
The Gas Guzzler booster stage design remained the same for this second flight from the MTA.
Wolfram holds the lower half of his ramjet ready for final assembly and stacking of the two stages.
Wolfram carefully walked the ramjet upper stage to mate with the booster stage already on the launch rail.
Wolfram Blume and John Krell examine the Gas Guzzler on the 1515 launch rail before its second flight.
The Gas Guzzler sits side-saddled in the 1515 rail launcher to allow proper clearance of the fins.
The Gas Guzzler lept straight and clean from the 1515 rails in its booster flight.

From the ground, it was clear that the booster flew straight and stage separation had taken place. The booster parachute ripped loose. The ramjet came down only under its drogue chute and the hard landing damaged the upper stage enough to warrant a complete rebuild.

Clean stage separation was evident, but the booster parachute ripped loose.

Wolfram spent several days after the launch event looking at the remains of Gas Guzzler. A few things are known so far:

The addition of 1.14 kilograms of ballast water did not cause any problems. The two stages – both separately and together – were still stable in flight. Also the stage separation worked.

After separation, the booster came apart at apogee into two pieces. It is an easy fix as a bulkhead blew out and only needs to be better reinforced against the loads. A recent addition of a GPS tracker to the second flight of the booster worked.

The ramjet lost electrical power at apogee. The reason was found and will be repaired.  The power failure meant that the GPS tracking stopped at apogee which is a serious problem. Wolfram is considering adding a backup GPS tracker to the ramjet with a separate power supply.

Based on telemetry, the deceleration seen after stage separation gave the drag coefficient (Cd) on the ramjet at 0.25. The accuracy of this calculation is about 10% based on the acceleration readings which is fairly good all things considered.

drag force = Cd * velocity-squared * air-density

The thrust also scales with the square of velocity and that gives the minimum velocity when thrust minus drag exceeds weight to be about 656 feet per second (200 m/sec).  This is the minimum velocity which the booster must supply at burnout.

For this flight using the K-motor in the booster, with the water ballast, the maximum velocity was 574 feet per second (175 m/sec). The ramjet reached an apogee of 3,800 feet AGL (above ground level). The booster pushing the ramjet reached an apogee of 3,100 feet AGL. Maximum acceleration under boost phase was 6 G’s. The ramjet was flown without fuel, only an equivalent weight of water instead of gasoline.

The next build of the Gas Guzzler will have a larger booster which will hold an L-sized motor.

In the 12-17-2021 flight, the ramjet’s drogue parachute deployed correctly but the main chute did not. This seems to have been caused by the drogue chute being too small. Rockets with dual-deployment parachute recovery systems typically split the rocket in two places with the drogue ejecting forward and the main ejecting backwards. It is a good, reliable system but it cannot be used in the Gas Guzzler design because you cannot split the ramjet in the middle. Both of the parachutes must deploy from the front. The recovery system design requires the drogue to pull the main out of the ramjet at 1,000 feet.  Wolfram developed this system on prior rocket with launches at ROC in Lucerne Valley and it has worked the last three launches. Wolfram is confident that it will work in the next flight of the ramjet, too.

Damaged fragments of the ramjet recovered downrange after the second launch of the Gas Guzzler.

The air flow measured inside the ramjet during the second flight on 12-17-2021 was within the range of an air blower system at Wolfram’s workshop that had considered using to static fire the ramjet with an operational burner. However, he is not comfortable with trying the main burner at his workshop, but testing the flameholder and its igniter is OK. Thus, a static test of a fueled ramjet coupled with an air blower system is being considered.

Going forward, once the ramjet is rebuilt, Wolfram would like to verify the performance of the igniter and flameholder over the full range of the air blower’s speeds in a static fire setup at the MTA. In this testing, he also wants to work on how quickly the flameholder ignites to avoid losing a lot of forward speed after stage separation.

Wolfram will rebuild the ramjet as quickly as possible and could be ready for another launch in February 2022. He would like to do another booster-only flight from the MTA to verify the fixes on that stage. If successful, then the next launch will try a flight with a short ramjet burn using roughly 5 seconds of gasoline fuel.

The society will peer-review the work done so far and find the best way to proceed. Wolfram is still evaluating the data and may have an update to this firing report later.

TESTING OF A GERB AS A LIQUID ROCKET ENGINE IGNITER

Dimitri and I have overseen a few recent liquid rocket engine static fires at the RRS MTA. Although there have not been any ignition problems, we had discussed different approaches to getting a safe and reliable start.

Liquid rocket engines sometimes have problems with achieving reliable ignition. Failure to ignite the cold mixture of propellants due to lack of sufficient energy or outright failure to light can create a serious fire or explosion hazard. One of the simplest approaches is to use a sufficiently energetic pyrotechnic device mounted in the engine throat from the aft side. Visible indication of the igniter firing should be confirmed prior to opening the propellant valves and releasing the stored pressurant gas.

There are a few different pyrotechnic devices that are good for this task such as lances and gerbs. Both require a special license to get. Dimitri, who has such a license and happened to have a couple gerbs that we could try. Lances have been used in prior liquid rocket engine firings and vehicle launches with success.

https://en.wikipedia.org/wiki/Gerb_(pyrotechnic)

https://en.wikipedia.org/wiki/Pyrotechnics

At this event, we decided to test a gerb to see if it would be appropriate to try in lighting a liquid rocket engine. We secured one to the top of the alpha box rail and fired it to examine the plume,

A gerb is a pyrotechnic device used in firework displays.
Simple schematic of a liquid bipropellant rocket engine with an external igniter system
The gerb was fired to determine if it would make a suitable igniter for a liquid rocket engine.

Our impression of the gerb operation was favorable in terms of its 20-second firing duration, but it seemed that a smaller gerb size might be sufficient. Smaller gerb sizes are available. There is also the long-term consideration of having these available for liquid rocket testing which would require a storage magazine. Other less complicated means should be explored.

IN CLOSING

Several of the attendees stayed behind to clean up the MTA and relax in the Dosa Building. This was the last launch event for our outgoing president, Osvaldo Tarditti, who has faithfully served the society for many years with his time, skills and leadership. We enjoyed the sunset on a mild and nearly calm winded day. It was a fine end to a great day at the MTA and what was our last event of 2021.


.

MTA launch event, 2021-06-19

by Dave Nordling, Reaction Research Society


The society held a launch event at the Mojave Test Area on June 19th. With many people having other plans, we were sparsely attended but able to get a few things done. The winds were very low and sun was very hot that day (105 F) making it a challenge to operate at the site, but with each other’s help we managed. I was the pyrotechnic operator in charge that day. I had intended to bring my hybrid rocket for this event but wasn’t able to complete the rocket in time. It would be Bill Inman’s Solar Cat, a pair of micrograin alphas and witnessing the UCLA Prometheus team launch their hybrid rocket after getting a replacement nozzle from the motor supplier.

UCLA Prometheus team posing before bringing their hybrid rocket to the launch rail at FAR.

BILL INMAN’S SOLAR CAT

Bill Inman and Jon Wells made the journey from Nevada to demonstrate a new sun tracking system improvement to better automate the solar heating process with the parabolic mirror. Unfortunately, there were several problems with the installation that ultimately went unresolved for that day. A series of benchtop tests would be needed before bringing his combined solar collector and rail launcher back to the MTA for a launch.

Bill had also expressed concerns about vibration from over-the-road travel taking its toll on the structure. He was already considering a major rebuild of his parabolic collector with a wider aperture. The next iteration of the Solar Cat is also supposed to be larger in diameter and capacity. With the Solar Cat work at a halt, Bill and Jon came over to assist Manny Marquez and myself with the loading of a pair of RRS standard alphas.

A PAIR OF ALPHAS

Osvaldo Tarditti was unable to attend this event, but he did measure out the zinc and sulfur in separate pre-weighed bags and provided a clean pair of alpha parts complete with the nozzles and well-painted, turned and recovered aluminum nosecones. For our new members, the society likes to give the experience of micrograin rocketry. Manny, Bill and Jon would have their first experience loading and firing an alpha that day. The society hasn’t launched many micrograin rockets since before the pandemic.

Manny Marquez loads the pre-weighed charges of zinc and sulfur powders before closing up the mixing barrel.
With the generator powering the electric motor driven roller, the drum sits and gently rolls mixing the zinc and sulfur to a consistent mixture.

Manny was a big help getting the equipment out and running. I was able to train him in the old RRS tradition of micrograin rocketry. With only two rockets, we gave the loading duties to Bill and Jon. For their handling of the dirty task of slowly loading the propellant tubes, they each got the honor of finishing the build and preparing for launch.

New member, Jon Wells (left) and returning member, Bill Inman (right) hold the first of two loaded alpha propellant tubes.
Bill Inman doing the hook-up under oppressive heat.

I was able to teach Bill, Jon and Manny the safe procedure for hooking up back to the control box in the blockhouse. With a well rehearsed procedure including air-and-road checks, we notified FAR in advance of firing our two alphas for that day to prevent anyone from wandering downrange before we fired.

Still capture from the launch of Bill Inman’s alpha; fast as hell

We each got a good lesson in the value of teamwork and a renewed respect for the heat of summer. The micrograin rocket is a simple but powerful initiation into experimental rocketry.

We all brought a lot of ice and drinks for that day and it was a big help.

Our next event has not been scheduled but we do plan to return to the MTA in July 2021. For members interested in planning the next event at the MTA, contact the RRS president and the executive council.

president@rrs.org


MTA launch event, 2018-10-27

The Reaction Research Society (RRS) held another launch event at our private testing site, the Mojave Test Area (MTA), on October 27, 2018. We had a really big day in hosting a launch event for Weigand Elementary School and supporting the projects of several of our members. This was one of the more perfect days for a launch. The day time temperatures stayed below 90 degrees Fahrenheit and the winds were nearly still the whole day.

Old Glory slowly waves in the light breeze of the cool late October morning in the Mojave Desert

Our pyro-op for the event was John Newman, of the Friends of Amateur Rocketry (FAR) group.

Friends of Amateur Rocketry – webpage

John allowed myself, Dave Nordling, and Larry Hoffing apprentice under him for the event as we are both in training to become licensed pyrotechnic operators in California.

John Newman (right) from Friends of Amateur Rocketry (FAR) talks with Mr. Oswald (left) and Dr. Kasparian (middle) at the RRS MTA, 10/27/2018

John Newman (left, behind the wall) and Larry Hoffing (right) oversee the loading of micrograin propellant at the RRS MTA

The RRS welcomed Weigand Elementary School and the Los Angeles Police Department’s (LAPD) Community Service Program (CSP). They had just finished the six session program and had ten (10) alphas ready to launch.

Frank Miuccio shows one of the two RRS blockhouses to the students of Weigand Elementary School

RRS member, Michael Lunny, had come out to the MTA the week before to help Osvaldo with mixing of the micrograin propellant. The simple mixture of zinc and sulfur powders is relatively safe, but requires time to properly mix and load. With the larger demand for alpha rockets with school projects and our growing membership, it’s no longer a process that can be done in the early morning hours before launch day.

Osvaldo Tarditti and Michael Lunny at the RRS MTA, 10/27/2018, having done the hard work of loading the rockets the week before

The ten alphas from Weigand Elementary and Michael Lunny’s alpha in white, all loaded, tagged and ready to go

RRS member Alastair Martin was at our event doing a great job in video-recording many aspects of our event. Alastair and Bill Janczewski, both newly elected to the position of Media Coordinator at the RRS, have been helping expand the presence of the RRS in social media and to the public at large.

Alastair Martin, armed and ready, in the RRS MTA blockhouse

Alastair gets his camera ready for the next alpha launch

Alastair got a lot of great shots and video-footage which I’ll share as they come in. Some of the short videos and photos from the 2018-10-27 event are already posted on the RRS Instagram page.

Follow the RRS on Instagram – ReactionResearchSociety

Just before the briefing, two of our new members had the chance to experience loading their own alpha rockets with the micrograin propellant. Xavier Marshall and Wilbur Owens were coached in the process and got a first-hand feel for classic micrograin rocketry. Michael Lunny’s alpha rocket was already set to go the week before when he helped Osvaldo load the ten alphas for Weigand Elementary.

Wilbur Owens loads his alpha rocket, one cupful at a time, gently bouncing out the air pockets as he goes

Once the alpha propellant tube is full of propellant up to the bolt holes, Xavier Marshall prepares to install his nozzle with the electric match and burst disk which retains the powdered propellant inside

A close-up view of the alpha nozzle with its plastic burst-disk and electric match resting on the interior side, the electric match wires protrude out the bottom (held back by carpenter’s tape just for convenience)

[SAFETY BRIEFING]

We conducted our safety briefing at the beginning of the event before all present. We discussed the many natural and man-made hazards to help everyone become aware and be more safe. John Newman made us aware of a native species of snake, the Mojave Green Rattlesnake, which is sometimes known to become aggressive when discovered. The Wikipedia page is linked below.

the Mojave green rattlesnake

Mojave Green Rattlesnake – Wikipedia

Frank also reminded everyone about keeping their distance from the Desert Tortoise, which is a federally protected species that is also indigenous to the Mojave desert and the MTA. It isn’t very common to see these animals during the height of the day, but everyone needs to be aware and take heed of their surroundings to protect themselves and the environment.

The federally protected Desert Tortoise

Desert Tortoise – Wikipedia page

Besides avoiding heat exhaustion and spiders, collecting and properly disposing of trash, and maintaining their hydration, all attendees must remain under the cover of our reinforced bunker during hazardous operations. With the conclusion of the briefing, we proceeded to a propellant demonstration to show the combustion process on a sample of composite propellant and micrograin powder.

Small sample of composite grain propellant burns hot enough to cut through the steel case supporting it, slow burning but very potent

The bright yellow plume of burning micrograin propellant, zinc and sulfur together go up pretty fast

The next step was getting everyone into the bunker, while John Newman conducted the event as our pyro-op. Larry and I were on hand to assist in the loading and readiness for firing. The RRS alpha had a steel box frame launcher which is our preferred method of guiding these speedy metal rockets up and downrange west.

We got started loading them into the rack by the numbers. The kids did a great job of painting them and making them their own. Most importantly, they label them with large numbers. The color of the fins matter the most since that is the only part left sticking out of the ground at the end of flight.

First of ten alphas right at liftoff

Same rocket just a few frames later

After launching all ten of the rockets, we all took our lunch break. The day was very pleasant, but we all enjoyed a little bit of shade. After lunch, LAPD CSP packed everyone up for the long drive to Los Angeles.

Frank talks with the kids of Weigand Elementary after having lunch after a great launch

[MEMBER PROJECTS]

We started working on membership projects starting with launching Michael’s alpha. It’s always rewarding to launch your first alpha and it’s an experience that never gets old. It’s usually one in a series to come. Big thanks to Michael for helping the society get ready for the event.

Xavier Marshall tried a new approach to launch by allowing me to use the fly-away railguide that I had customized for the 1.25″ RRS alpha propellant tube. Additive Aerospace makes many standard models which this one was derived from the 38 mm design.

Additive Aerospace – fly-away rail guides

Xavier Marshall’s RRS alpha clamped into the launch rails

Flyaway railguide clamped around an RRS alpha

Xavier Marshall inspects his first alpha as it sits on the rail

The first rail launch of an RRS standard alpha was successful. The flyaway railguide seemed to hold as the micrograin rocket sped off the rails. We took video from the facing side of the rail to get a better look at the operation. I was able to get one good still from my camera phone video from the blockhouse. You can see the railguide just above the fins as the rocket has cleared the rails so the flyaway railguide has sprung open and now is free to tumble away.

Xavier’s rail launched alpha rocket makes a clean path up the 20-foot guide, rail guide still seen near the rocket just after clearing the rail

The railguide fit to the alpha very well but the rail buttons were a little sticky as the rocket was slipped into place. I think the dusty aluminum rail is more to blame for this. The workmanship on these flyaway railguides from Additive Aerospace is quite good. Flying one of these devices with a micrograin rocket was expected to be challenging given the high acceleration that micrograin rockets are known for.

The railguide was not recovered intact. I recovered most of the pieces and the plastic end pieces showed fractures. It’s not clear if the railguide broke on the ground from the fall, but given the spread of the pieces, it could be possible the sudden acceleration of the RRS alpha fractured the lower clamp as the rocket took off. Review of Alastair’s video in slow motion may answer what the failure mode is. All pieces were recovered within 50 feet of the rail.

The recovered pieces of the flyaway rail guide. A successful launch but the mechanism didn’t survive for more than one attempt.

Jack Oswald and his team had a set of sample end-burner motors with their next batch of propellant for burn-rate testing. After setting up the first motor, a key part was missing and the pressure transducer had to be mounted too close to the exit plume. It was expected that the pressure transducer wouldn’t survive the first burn but the test was expected to take good data. The test was executed, but unfortunately the test over-pressurized due to the grain separating from its liner during the initial startup. A lot was learned but the other motors were not able to be tested.

Jack Oswald inspects his test motors as he moves them to safe storage before test

Jack’s BEM test starts out okay. A leakage stream is seen coming out the side.

Just a second later, Jack’s test rig overpressurizes and the nozzle plate pops off

My last photo taken of that day was the last of the three member alphas sitting in the box rails ready to go. Wilbur Owens had the honor of flying his first alpha rocket at sunset.

Wilbur Owens takes a picture of his first alpha ready to fly away

The sun setting at the RRS MTA, Wilbur Owens’ first alpha rocket sits ready to fly out of the rails

With the last of our thirteen alphas flying out, we proceeded with the first firing of the horizontal thrust stand built to test loaded alpha propellant tubes. Osvaldo made some modifications to my stout steel frame adapted to the concrete slab in front of the old RRS blockhouse. Dave Crisalli poured this concrete slab as a working platform in the 1970’s. USC in recent times drilled the slab with 1/2″ female anchor bolts to test small 50-lbf motors. It made sense to use this existing foundation for our horizontal thrust stand.

Matteo Tarditti installs the completed RRS horizontal thrust stand to the concrete slab

Osvaldo uses his 185 lbf son, Matteo, as a quick load cell calibration check as Jack Oswald observes the 1124-lbf ranged load cell output on the laptop in the blockhouse. Awkward, but effective.

After some initial software and operator problems with getting and keeping the S-type load cell calibrated, the system was ready to go.

It has been MANY years since the RRS had made direct impulse measurements of an RRS alpha micrograin rocket, but we felt this hardware would be useful for other similar projects in our near future. Although horizontal testing of a micrograin rocket is not indicative of the actual vertical flight, we felt we could still learn much from this testing.

A simple bottle jack (commonly used for changing an automobile tire) was used as a load cell calibration device (pressure gauge was damaged in handling)

We retreated to the blockhouse and got the testing underway. After two false starts from the bunker, we got the alpha motor to fire in the horizontal position and captured it on video.

The results were good in that the load cell readings were captured and the structure adequately retained the rocket in its very brief (0.4 second) thrust bit. Osvaldo crunched the numbers from the readings we got from the test. Load cell readings indicated we reached a peak thrust of 544 lbf. Burn time was only 0.4 seconds.

This is the raw data from the alpha firing in the (translating) horizontal thrust stand; we need more data

Results from the alpha static firing on 2018-10-27

The RRS is very grateful to Interface Force Inc. of Arizona for their generous donation of the S-type load cell we’re using.

www.interfaceforce.com

An S-type load cell, made by Interface Force Inc.

These devices are not very expensive ($350?? each) and are available in sizes from just 100 lbf to up to several thousand pounds. Button cells are more compact and also work well, but they tend to be more expensive.

The big surprise was that our concrete pad wasn’t as well secured as we had hoped. The pad was only 6 inches thick which means that the slab was only an inch or so beneath the surface. I do recall being told this slab poured by RRS member, Dave Crisalli, in the 1970’s, was only intended to be a working surface and that it wasn’t very deep. USC in recent times had drilled the pad with 1/2″ female anchor bolts for a small 50-lbf.

The concrete slab held fast initially, but suddenly broke free displacing itself by over half its length.

Another observation was that we get a little bit of gas leakage at the end of the burn at the bulkhead. This has been seen in other alpha flight videos and thus it wasn’t a surprise.

Despite the moving target of the whole stand moving, just after the alpha fires, you can see gas leakage at the bulkhead

Osvaldo did not see any damage to the seals when we disassembled the rocket from the stand. This may be a weakness of the seal design but it doesn’t seem to harm performance. More experimentation will shed light on this.

Check out the RRS Instagram page to see this footage. I’ll be uploading it to our YouTube page soon as Instagram has a 60-second time limit for video.

While we were conducting test operations at the MTA, Wilbur Owens located his rocket downrange and started the laborious process of alpha recovery by shovel. Osvaldo’s extractor tool has made short work of this step, but I don’t know if it was available that day?

[PROPELLANT DISPOSAL OPERATIONS]

Jack and his team had a quantity of unspent composite propellant which had to be properly disposed. He had quite a bit from a failed attempt to cast a previous motor that hardened too quickly. The RRS MTA is a good place to do this. With the low winds, we are able to safely touch off the two batches in the waning hours of the day.

The first burn was the smaller of the two. The sun had already set so we were losing the light fast.

The first propellant disposal burn was a bit brighter than I thought but manageable.

With the light almost gone, the second batch lit up the night just for a brief moment before fading.

2nd propellant disposal burn starts off with the last of the daylight fading at the MTA

The second propellant disposal burn at its brightest, but quickly fades as the burn safely completes

[IN CONCLUSION … THINGS COMING UP]

Frank had said that the LAPD CSP is looking to start the next school program in January of 2019. We are very grateful to the LAPD CSP for their continuous support to our classes. The RRS is proud to help the community by sharing the hobby we love.

As mentioned in our last monthly meeting, the next event with the RRS will be our visit to Chapter 96 of the Experimental Aircraft Association (EAA). RRS members, Xavier Marshall and Wilbur Owens, invited the RRS membership to join them at their hangar at the Compton Airport on Saturday morning, November 3rd, at 10:00 AM. The RRS is interested in getting inexpensive shop space that is reasonably convenient to our membership residing in the Los Angeles area. The RRS is looking to help cultivate practical machining skills such as lathe work and milling. Many of our members already have these skills to some degree, but want to help other members become more adept at making their own nozzles, nosecones and other rocket parts.

The next RRS meeting will be November 9th at 7:30PM at the Ken Nakaoka Community Center in Gardena, California. We hope to have Jack Oswald and his team present their results. Despite the failure of the first and only sample hot-firing a great deal was learned which will make the next set of tests more likely to succeed.