November 2018 meeting

The RRS held our monthly meeting on Friday, November 9, 2018 at the Ken Nakaoka Community Center in Gardena. After coming to order and the reading of the treasury report, we discussed the agenda topics for this month. We were happy to be joined by new RRS member, Mike Albert.

[1]
Results of the RRS educational event at Weigand Elementary School with the LAPD CSP program was very positive. The launch event at the MTA had an excellent turnout, good demonstrations and ten alphas flown. We are becoming more effective in our execution at launch day, but there are still opportunities to improve the speed of operations while keeping our focus firmly on safety.

RRS president, Osvaldo Tarditti, teaches the kids at Weigand Elementary School

The weather in late October was ideal and we were able to enjoy the low winds and cool weather. With the low winds, the impact of all alphas were able to be heard and the timing by the kids showed the flight times to be very consistent. Many thanks to Osvaldo and Michael Lunny for doing a great job in packing them for what looked to be very good results.

the kids of Weigand Elementary School at the RRS MTA on 10/27/2018

[2]
Frank is in the process of coordinating the next RRS educational event with LAPD to be a school affiliated with the Imperial Courts housing project which should begin in January 2019 sometime around the Martin Luther King holiday. The school will be announced soon once the details are finalized. The launch event will likely take place in March 2019.

Michael Lunny (back table); Mike Albert (left) and Frank Miuccio (right)

[3]
Results of Jack’s ballistic evaluation motor (BEM) testing were discussed. Jack and his team were not able to attend the meeting, likely due to the California wildfires in his area on that night. The testing rig had a few flaws and a missing part. It was unclear if any useful data came from the one test. Osvaldo is working with Jack on improvements to his BEM. A deeper discussion of Jack’s BEM will hopefully come at the next meeting.

Jack Oswald’s BEM tied to a stake in the dry lake bed for stability; undergoing preparations for 10/27/2018 testing

[4]
Results from the horizontal thrust stand testing were discussed. Despite the problems with the foundation slab sliding with the firing of the micrograin alpha rocket, the load cell did record data which partially confirmed the impulse bit measurements from the past. Many people enjoyed watching the footage, but in all seriousness, an appropriate mounting foundation needs to be made to continue tests.

Matteo Tarditti secures the load cell fixture to the horizontal thrust stand

One proposed solution was to keep the existing shallow slab and drive a long stake into the ground to restrain the slab from moving south as the nozzle exhaust points north when firing. Another solution is to dig away the soil at the site and pour a deeper, rebar reinforced slab with the same 1/2″-13 female anchors. Keeping the slab low near ground level will keep this simple small foundation from preventing road access around the old blockhouse.

example of a buried foundation slab for the horizontal thrust stand

[5]
The Additive Aerospace flyaway railguide was discussed. The device worked well with the micrograin alpha rocket. The fit was good and the camera footage from different angles showed the alpha in the railguide rode the full length of the rail flying very straight. The flyaway railguide did not survive its maiden voyage, most likely due to impact from the fall back to the ground. Also, there is a concern that using the micrograin rocket on the aluminum 8020 rail would eventually jam the rails with the zinc-suifide residue that coats the surfaces after each launch.

Flyaway railguide clamped around an RRS alpha

The recovered pieces of the flyaway rail guide. A successful launch but the mechanism didn’t survive the fall back to the ground

[6]
The RRS needs to finalize the 2019 symposium date very soon. Frank and others consulted the local calendars of relevant organizations and schools and we have arrived at two possible dates in April. The announcement for the 2019 RRS symposium will be made very soon as invitations and preparations must begin very soon.

Date to be announced soon, the RRS will hold the 2019 symposium at the Ken Nakaoka Community Center in Gardena

[7]
We had a discussion of safety issues and propellant handling protocols during the meeting. The issue is complex and there are different opinions about what the RRS should require of our attendees and membership, but two points that were made clear is that safety is most important and that the RRS will seek to educate our membership about compliance with the applicable laws and best practices from our membership experience.

[8]
The RRS visit to the Experimental Aircraft Association (EAA), Chapter 96, at the Compton Airport on November 3rd was a success. RRS and EAA member, Xavier Marshall, gave Osvaldo and I a good tour of the hangar and their machine shop.

The EAA 96 hangar at the Compton Airport

Inside the EAA 96 hangar, door to the office

The EAA has several airplane projects in work including one by Wilbur Owens. We ate lunch at Wilbur’s hangar and talked about future projects at the RRS including the standard liquid rocket.

Relaxing after lunch in Wilbur’s hangar

Wilbur Owens and Osvaldo Tarditti discuss the RRS standard liquid rocket

The visit concluded with a tour of Tomorrow’s Aeronautical Museum and their rocket laboratory. We visited with some of the students who were working on their rocket project. The RRS was glad to see a lot of enthusiasm for the science we love.

Tomorrow’s Aeronautical Museum at the Compton Airport

The rocket lab inside Tomorrow’s Aeronautical Museum

The EAA membership is quite reasonable at $80/year. Members have access to the facilities at the hangar including the lathe, mill and metal shears useful for both aircraft and rocket structures. For those interested in joining the EAA, contact Xavier Marshall.

[9]
The next order of business was the nomination of officers for the next calendar year by our administrative membership in attendance. The first step was appointing of the election chairman which will be Larry Hoffing. The prior executive council members were nominated to their same posts.

Osvaldo Tarditti, President
Frank Miuccio, Vice President
Dave Nordling, Secretary
Chris Lujan, Treasurer

Larry will email our administrative membership for their votes in the coming weeks. Write-in candidates are allowed. The election ballots will be due a week prior to the next meeting. Results of the election will be announced at the December meeting to be held on Friday, the 14th.

[10]
The RRS may have another launch event at the MTA, but this is dependent on confirmation of the appropriate resources needed to support the event. This will likely take place as soon as next week, or possibly on the Saturday after Thanksgiving. The RRS will post the formal announcement on the “Forum” of this website if the event becomes confirmed.

[X1]
Osvaldo was up in Rosamond and was able to take a short trip to the MTA to extract more of the rockets he could find with his ratcheting extractor tool.

A pile of alphas extracted from downrange at the MTA

In addition to the 15 alphas he was able to bring back for refurbished parts, he found the beta rocket that UCLA had launched.

UCLA’s beta rocket recovered from the desert floor

other parts of the beta rocket were able to be extracted including the beta coupler and a fragment of the red plastic nosecone

This beta rocket had an altimeter payload encased in a vented metal shell. Unfortunately, the Jolly Logic bluetooth solid-state device might have survived the crushing impact but the corrosion from possible rainwater intrusion after being planted in the desert dry lake bed sand for over a year proved to be fatal.

Payload case built into the beta rocket’s payload interior; note how the holes were crushed

Chris Lujan is inspecting the device, but it is very unlikely that any data will be recoverable from the chip. It is a shame as getting direct measurements of a beta flight would be great data to have. I guess we’ll have to try again?

Remains of the Jolly Logic altimeter chip, battery still attached

[X2]

At the end of the meeting, I gave a brief overview of a second design for the RRS standard liquid rocket. The system is smaller than Richard’s initial 1000-lbf design and will use ethanol/LOX as propellants similar to prior RRS designs. One of the key features is the custom-built aluminum tanks to be made from common piping sizes and head designs made from aluminum round stock on a lathe. In the last few minutes, I was only able to provide a cursory outline of the project which will be discussed in further details at subsequent meetings. I have identified a few of the key parts including high pressure solenoid valves, aluminum tubing, AN fittings and a common composite overwrapped pressurant vessel commonly used in paintball sports.

simple schematic of a blowdown rocket system, three tank arrangement

[IN CLOSING}

Wilbur and Xavier mentioned that the EAA is open to having the RRS use their office for one of our monthly meetings in the future. Given how close the Compton Airport is to the Ken Nakaoka Community Center in Gardena, this is quite practical. The RRS will make the announcement soon if one of our meetings in early 2019 will be at the EAA 96 hangar.

If there is anything here that needs correcting, please contact the RRS secretary.
The next RRS meeting will be Friday, December 14th, 2018.

September 2018 meeting

The RRS held its monthly meeting for September 2018 this Friday, the 14th, at the Ken Nakaoka Community Center. We were displaced from our usual meeting room, but got the upstairs room F with the window view which was pretty nice. We were well attended, but got a very late start. Meetings begin at 7:30pm. There were several little events at the meeting which did not make the agenda.

Alastair Martin, Bill Behenna and Richard Garcia at the September 2018 meeting of the RRS

[X1]
The RRS was glad to welcome new student member, Bailey Cislowski. We had a short little social event at the end of the meeting which was a nice way to end the week.

Bailey Cislowski and RRS VP, Frank Miuccio

Also, the RRS was glad to re-welcome new members Wilbur Owens and Xavier Marshall. Wilbur had his first rite of passage in the RRS by taking his first standard alpha rocket. He’s looking forward to filling it with micrograin at the next launch event on October 27th. It will be one of many to come!

Xavier Marshall and Wilbur Owens; Wilbur gets his first RRS alpha

[X2]
Xavier invited the RRS to come tour the Experimental Aircraft Association’s local chapter at the Compton Airport. The EAA holds regular events including educational events with local kids.

Experimental Aircraft Association, Spirit of 96

Contact information for the local chapter of the Experimental Aircraft Association in Compton

[X3]
RRS member Alastair Martin is active with the Mars Society which just completed their 21st annual International Mars Society convention at the Pasadena Convention Center. If Alastair can oblige at our next RRS meeting, I have asked him to give the RRS a report on his experiences at the event.

Mars Society – home page

Besides film-making and photography, another one of Alastair’s talents is screen-printing on shirts. I recently had the RRS logo added to this bright-yellow shirt that I bought to better survive the hot Mojave desert climate of the RRS MTA. These bright-yellow “Ultra-Club” cool & dry shirts can be bought on Amazon in a variety of sizes besides the “XL” that I wear.

The RRS logo proudly worn on a fall afternoon

[X4]
I recently purchased a fly-away rail guide from Additive Aerospace. This company specializes in model rocketry parts including this simple clamp-on device that obviates the need for mounting rail buttons on the smaller rockets.

Additive Aerospace – fly-away rail guides

Additive Aerospace was nice enough to customize their standard 38mm design to fit the slightly smaller (1.25″ diameter) RRS standard alpha propellant tube. The fit check was perfect and the next step will be to attempt to launch an alpha from the 80-20 rail launcher we have.

Flyaway rail guide customized for an RRS standard alpha micrograin rocket is a good fit (and held closed by my hand).

Flyaway rail guide has two pairs of rail buttons to hold the rocket on the launch rail.

The flyaway rail guide is spring-loaded to open once the rocket travels up and off the launch rail, then simply falls away as the rocket speeds off

1.5-inch 80-20 aluminum rail extrusion, rail buttons are guided down this path on the rocket’s way up and away

12-foot aluminum 80-20 rail launcher, RRS MTA bunker in the background

[X5]
Osvaldo completed the cylinder piece of the ballistic evaluation motor (BEM) assembly that I designed for testing the burn rate of solid propellant samples. I forgot to bring the graphite nozzle pucks that Richard Garcia made for the assembly. Once the gaskets are fitted and the pressure transducer is checked out, we can begin to prepare 4-inch long samples of propellant into the 3/4-inch PVC tubes for which the BEM was designed to fire. This will be a useful tool in characterizing the AP/HTPB/Aluminum solid propellant batches that will be used in the prototypes of the SuperDosa project. Larry has already made a small batch of the RRS standard recipe solid propellant. Some of these first grains may be used in the propellant burn demonstration at the next RRS MTA launch event.

RRS BEM cylinder sits on top of the bottom plate, top plate in the background

[X6]
Thanks to Osvaldo again for his help with the two-stage alpha rocket that I designed. In this prototype, the payload tube was made longer for the possibility of a parachute recovery system for the upper stage. The 1-1/4″ PVC pipe was machined down to 1.600″ OD to fit inside of the standard alpha’s aluminum payload tube. The steel nozzle design, although simpler to make, may prove to be excessively heavy and throw off the mass balance of the rocket. The graphite nozzle design with its split retaining ring may be the better choice. More work is needed before attempting to fly this prototype design including completing the inter-stage timer circuit for deploying the in-line second stage motor in flight.

Two-stage RRS alpha rocket; second stage with a small AP/HTPB/Aluminum solid grain motor

[X7]
Since August, Osvaldo has made some progress in testing the load cell that will be used in the horizontal thrust stand. The bottle jack he used was tapped with an analog pressure gauge and the compression load into the load cell can be accurately measured. Despite some seal leakage problems with the older bottle jack, the results he and Matteo gathered from his data acquisition unit showed our S-type load cell matches the calibration sheet fairly well.

Load cell compression testing rig using a pressure gauge and a bottle jack

Finally, we got to some of the originally scheduled agenda topics:

[1]
Frank Miuccio gave an overview of the next educational event that had its first event of the series held today at Weigand Elementary school. This is the latest in the series of events we’ve had with the LAPD CSP program. The final event will the launch of the alpha rockets at the RRS MTA on October 27, 2018. Dave Crisalli will be our pyro-op at the event.

Osvaldo, Larry and Frank listen at the September 2018 meeting

[2]
We didn’t have another launch event planned yet for this year, but it’s always possible.

[3]
Richard Garcia gave a brief overview of his successful hot-fire test of his 1000-lbf kerosene-LOX motor on August 18, 2018. His pintle injector with an ablative chamber insert worked very well despite a leaking fitting at the LOX port. Some of the equipment did not work completely as hoped, but the overall test produced a stable thrust profile and clean cut-off. Richard put a lot of work into this first design which helps pave the way to the RRS standard liquid rocket project which will remain a regular topic with the RRS moving forward.

Richard Garcia after presenting his liquid rocket testing results; a proud day

Richard then moved into the details of integrating a liquid motor into a rocket body. Using commonly available parts and a few simply made connecting pieces, a simple but effective liquid rocket design can be made with a modest budget easily affordable to universities and individuals. This is still a work in progress, but the RRS is committed to bringing this project to fruition. We look forward to the next engine build which will likely be in a series of builds that will ultimately lead to the RRS standard liquid rocket design.

Richard’s Solidworks model showing both propellant and pressurant tanks plumbed into the rocket body

[4]
We had a very short discussion about the RRS expanding our roster of pyro-ops. Chris Kobel of ROC presented at our August meeting and gave a lot of practical advise on this subject.

Many of our next member “class” including myself have already written their rocket resumes to describe their experience with rocketry and have begun soliciting licensed pyro-ops for recommendation letters which is not a task to be taken lightly. Beyond the RRS regular and lifetime membership, the Rocketry Organization of California (ROC) was willing to help RRS members learn and earn their recommendation letters by attending and participating at events at ROC. The Friends of Amateur Rocketry (FAR) have also been very helpful to those of us who are aspiring to be new pyro-ops. The rocketry community is a small one and it is good to have the support of like-minded organizations to keep the membership across all societies safe, strong and active.

ROC holds monthly events on the 2nd Saturday of each month. I have been working on organizing a group of RRS members to go out to the next ROC event to get to know our smoke-and-fire sisters and brothers.

Rocketry Organization of California – Roctober event on Oct 13-14, 2018

To all of our membership interested in making this trip to the Lucerne Valley on October 13th, contact the RRS secretary. If we have a good number of people interested, we can make this a worthwhile trip. This trip would be on the Saturday immediately following the RRS meeting on that Friday night (Oct 12th). ROC will be holding an event with school kids, but if the RRS members bring their rocket resumes we may be able to have a conversation with the ROC leadership and get some advice and training. If we get a few members to ride out, I’ll contact ROC to let them know we’re coming. Please let me know by Friday, September 28th.

[IN CLOSING]
Next meeting of the RRS will be October 12th, which is always the 2nd Friday of the month. The quarterly update for the SuperDosa project will be part of the agenda as well as several items we did not cover in our agenda. All RRS members are welcome to make suggestions for discussion topics at future meetings. For those wanting to add topics, please let me know. I will post the preliminary agenda topics at the 1st of the next month on the RRS website Forum page.

As always, please keep your email and contact information up to date with the society. We’re glad to see so many new members and returning members. Even if you can’t make it to Gardena on a regular basis, just send us a line to say “hello” and tell us how you’re doing.

secretary@rrs.org

MTA launch event, 2018-08-18

The RRS had a small event at our private Mojave Test Area (MTA) on August 18, 2018, to allow Richard Garcia to test his liquid rocket motor. Richard built a pressure-fed, 1000-lbf kerosene-LOX motor including all of the static fire test stand equipment and control valves.

desert morning at the MTA

Richard Garcia reviews his list in the MTA blockhouse

Switch panel and electrical cabling

Richard had spent a good part of Friday and early Saturday getting his test stand mounted and ready. He had made arrangements to share the contents of a liquid oxygen dewar to supply the oxidizer he needed for his test with other RRS member, Sam Austin. Sam was also preparing to fire his liquid rocket motor at the Friends of Amateur Rocketry (FAR) site just south of the RRS MTA on this same day. Arriving early in the morning, I was glad to help Richard with the final preparations at the RRS MTA to start the initial checkouts and ultimately a successful hot-fire test.

Richard checks the wiring and pneumatic line connections

Richard’s 1000 lbf kerosene/LOX motor was designed for a chamber pressure of 300 psig and used a pintle-type of injector with an ablative lined chamber and graphite nozzle.

Richard Garcia tests both flow paths of his pintle injector in water flow

Ablative liner, G10, sits inside the combustion chamber of Richard Garcia’s 1000 lbf kerosene-LOX liquid rocket motor

Graphite nozzle within the chamber assembly of 1000 lbf kerosene-LOX motor

He brought his motor hardware to the January 2018 meeting, but now it was finally time to prove his design with a hot-fire test.

Richard shows his liquid rocket motor at the January 2018 meeting

Richard’s test used a high pressure nitrogen bottle to pressurize his propellant tanks, the left one for liquid oxygen (LOX) and the right one for kerosene. This regulated inert gas source also provided pneumatic pressure for the propellant valve actuators.

Richard’s static fire tanks and equipment mounted and ready for test, 2018-08-18

The top half of the thrust stand with the tanks and valves is fixed to the structure. The engine is suspended below and is secured to a plate which was mounted to an S-type load cell. These devices are an affordable means of measuring both compressive and tensile forces by the internal strain gauges built into them.

An S-type load cell used for thrust measurements in the static fire equipment

Caution was taken to keep the motor clean during handling and installation by caps on the ports and closing off the nozzle with aluminum foil.

View of Richard’s 1000-lbf motor from below; aluminum foil covering the nozzle exit to prevent foreign object debris (FOD) in the injector

With the validation testing complete and all valves are working, fuel was loaded, then preparations to load the cryogenic liquid oxygen (photo courtesy of Rick Maschek of FAR)

Careful review of the firing procedure before getting down to testing

Preparing for LOX transfer (photo courtesy of Rick Maschek of FAR)

All propellants loaded, everyone in the blockhouse, running the final checks before starting the countdown (photo courtesy of Rick Maschek of FAR)

The view from the blockhouse, a nice clean start of the liquid motor (photo courtesy of Rick Maschek of FAR)

Another view of the rocket firing from Richard’s tripod-mounted camera, 2018-08-18

A few seconds later with the dust kicking up from the motor firing, 2018-08-18

Closeup view of the rocket firing from a small mounted camera; it blew over from the firing but capture this image

Most of the testing seemed to work well. The motor had a clean start and stable run time for the full 5 seconds duration that Richard had predicted. Post-test inspection showed the engine to be in very good condition.

A view from up the nozzle after hot-fire; all looks good

Surface of the 1-inch thick steel plate was melted from the impinging plume; perhaps we’ll mount the next engine a bit higher

Tank pressure measurements were able to be recorded, however the thrust and chamber pressure (Pc) measurements were corrupted. Richard is working on downloading the hot-fire video to be posted on the RRS YouTube channel.

Soon he’ll disassemble the injector and chamber to see if the motor can be fired again. This was a great success for the RRS and we hope this to be the start of several liquid motor hot-fire tests as the RRS continues to improve on this powerful type of rocket.

Richard Garcia stands next to his 1000-lbf kerosene-LOX liquid rocket motor at the RRS MTA, 2018-08-18

I hope that Richard will be able to present his results at the next RRS monthly meeting on the 2nd Friday of the month. The next RRS meeting will be Friday, September 14, 2018 at the Ken Nakaoka Community Center in Gardena, California.

The RRS would also like to thank Mark Holthaus and Rick Maschek of FAR for their assistance on this test.

***