August 2020 virtual meeting

By Dave Nordling, Reaction Research Society


In the absence of our secretary, I took a few notes from the meeting. This is what I recorded. Contact the RRS secretary for updates and corrections.

The Reaction Research Society held its monthly meeting by teleconference on August 14, 2020. Our monthly meetings are always held on the 2nd Friday of every month. We’ve had a lot of success with holding our meetings remotely and we will likely continue for the next coming months to continue our commitment to safety in light of the pandemic. Our membership is in regular contact with our community which has allowed us to promote and hold events including our first launch at the Mojave Test Area (MTA) on July 25, 2020. You can read the details in the firing report posted on this website.

Our members are doing well and thus far no one has reported being infected with COVID-19 which we hope continues to be the case. Frank is in regular contact with the Los Angeles Police Department’s (LAPD) Community Safety Partnership (CSP) but under current circumstances, the next school event may not be until next year. Options are being considered on how to continue our educational programs while maintaining social distancing.

The August 2020 RRS meeting held by teleconference.

REVIEW OF THE 7/25/2020 LAUNCH EVENT OPERATIONS

The first topic was the recent launch event we held on July 25th at the Mojave Test Area for the first time since the start of the pandemic. We had some difficulties in operating under the summer heat (106 Fahenheit at the peak) but this is nothing unusual for this time of year. Many of us were well prepared for the hot sun with our hats, sunscreen and iced beverages and chilled water. We also did a good job of watching out for each other. Still, the heat was responsible for leaving all but one of the micrograin rockets downrange. It also underscores the importance good planning, coordination and putting safety over all other considerations. We had several mis-fires which we were able to resolve, but maintaining discipline during the event proved to be a larger challenge. The launch protocols will be explained more thoroughly in the next safety briefing. The meeting highlighted that every member and pyro-op attending the event holds a joint responsibilty for the safety of all and it starts with self-discipline and patience by all.

Getting the beta rocket ready in the launcher on 7/25/2020 and setting the camera

We also discussed proper protocols such as announcing the pyro-op in charge well before the event and the necessity of providing detailed information about the intended operations to the pyro-op in charge in advance. Most of the planned projects were well understood as they were micrograin rockets and the previous hybrid rocket attempted at the last launch event.

DATA REVIEW OF THE STANDARD ALPHA FLIGHT OF 7/25/2020

The only micrograin rocket to be recovered from the launch event of 7/25/2020 was the standard alpha with plain steel nozzle. John Krell has been developing progressively better and more powerful avionics payloads designed to fit the narrow confines of the RRS standard alpha payload tube. John was able to spot and recover one of his payloads and process the flight data captured that day. The avionics payload was intact after being extracted from the desert floor including the solid-state data chip. John was able to recover the data and accurately reveal the huge acceleration of the RRS standard alpha with unprecedented accuracy. A peak acceleration of 114 G’s was recorded at roughly 0.3 seconds just before tail-off and burn-out at 0.4 seconds from launch. I was able to screen capture his plot below.

John Krell’s presentation of the data from the one recovered alpha ( to date).

The second plot shows the velocity derived from the accelerometer readings in the half-second which captures burnout at 0.4 seconds. Burnout velocity was measured at 670 feet/second which is consistent with prior data and trajectory predictions. The alpha is subsonic but travels at substantial speed from the swift acceleration. Given the high air temperature that day, 106 Fahrenheit, the speed of sound was 1165 ft/sec. The altitude of burnout was determined to be 130 feet which is consistent with prior flight data and high speed video footage.

Trajectory plot of the standard alpha flight from 7/25/2020

The third plot was made for the whole flight of standard alpha from the 7/25/2020 event from launch to impact at 35 seconds. Given the roets were impacting 2000 to 3000 feet downrange, the sound delay matches with the time to impact witnessed in the observation bunker. The maximum altitude was just over 4,400 feet based on the barometric pressure measurements using the 1976 standard atmosphere model. Base atmospheric pressure reading at the start of the flight shows the elevation of alpha launch rail platform is 2,048 feet.

Trajectory of the standard alpha flown on 7/25/2020

John Krell has really accomplished something with these custom avionics packages. He has been mentoring some of our other RRS members and the society encourages other members to build and fly their own payloads to spread the knowledge.

John Krell and Bill Behenna discuss avionics payloads

The society hopes to recover the other two alphas and the beta for further data analysis. Both of the unrecovered alphas from this last launch event had ceramic coated nozzles which should not erode. This should result in a more ideal performance as the throat area will not open up. The actual effect of this design improvement can best be assessed with recorded flight data. Also, we hope to compare the trajectory of the four-foot propellant tube with the standard length. Lastly. if the beta is recovered with recorded flight data, we may be able to assess its performance in unprecedented detail. The society hopes to report this flight data soon.

IMPROVEMENTS TO THE NITROUS OXIDE FILL/DRAIN MANIFOLD

The failure to launch the second build of the hybrid rocket was discussed at the August 2020 meeting. After discussing the launch procedures and corrective actions followed during the attempt to launch the nitrous oxide hybrid at the MTA with Osvaldo (the Level 1 pyro-op in charge) and racing experts at Nitrous Supply Inc., Huntington Beach, California, the cause of the fill valve’s failure to open became clear.

nitroussupply.com

In the racing industry, these normally-closed direct-acting solenoid valves are commonly used to open the flow of stored nitrous oxide bottles against the full supply pressure in the storage bottle. These are called “purge solenoid valves” among racers because it is this solenoid valve that opens the flow of nitrous oxide which displaces or purges out the air in the engine lines during the race. Buying these 12-volt DC high pressure solenoid valves from racing suppliers is much cheaper given they are made in greater numbers for the racing industry. (~$120 each versus $400+ each from reputable solenoid valve manufacturers).

In researching common designs for normally closed (NC) solenoid valves, the excessive heat of that day simply created too much inlet pressure against the internal valve seat for the electromagnetic solenoid coil to overcome and open the flow path. 1000 psig is likely the limit to reliably open these valves according to advice given by Nitrous Supply Inc. who has decades of practical experience at racing tracks around the country using purge solenoid valves for an application nearly identical to the needs of hybrid rocketry fill and drain operations. The ambient temperature at the MTA on launch day was creating a bottle temperature of 1400 psig accordling to the bottle pressure gauge and the separate pressure gauge in the manifold when the bottle was opened. This is well above the 900 psi recommended pressure range seen by marking on the gauge. The bottle, valve body and fittings are rated for these higher pressures, but opening mechanism of the solenoid valve was not.

A color-coded example of direct-acting normally closed solenoid valve is below. Blue shows the high pressure fluid path which is holding the seat down along with some assistance from an internal spring only for low inlet pressure conditions. With current applied to the electromagnetic solenoid (Orange), it pulls up on the moving armature (in red) which then allows the fluid to slip past the seal and through the flow control orifice when commanded open. Only a slight amount of movement is necessary to lift open the valve. However, if the fluid inlet pressure is too great, the solenoid can not provide enough force to lift and open the seal, therefore the valve stays shut.

Example of a direct-acting normally closed (NC) solenoid valve courtesy of M & M International (UK) Limited with color added to distinguish key parts.

To understand the relationship between pressure and temperature of the nitrous oxide you must consult the vapor pressure curve for nitrous oxide. This set of data points spans between the triple point and critical point of any pure fluid. NIST provides accurate data to generate such a curve.

webbook.nist.gov

nitrous oxide (N2O) liquid state properties, HTML5 table output from Web-book NIST.gov website
Nitrous oxide (N2O) vapor phase properties, HTML5 table output from Web-book NIST.gov website

The critical point of any pure fluid is where the distinction between gas and liquid phases disappears. This is not necessarily hazardous but it does mark a fundamental change in fluid behavior. The critical point of nitrous oxide (N2O) is 1053.3 psia and 97.6 degrees Fahrenheit according to Air Products company literature. This means the nitrous oxide conditions in the bottle at the launch (1400 psig as read on the gauges with an fluid temperature of 106 Fahrenheit or more) was well in the supercritical range, but again, this is only hazardous if the pressure vessels and plumbing connections aren’t able to safely contain the pressure. If the solenoid valve could have been opened, the pressure drop would have returned the supercritical fluid back to normal conitions and would flow dense liquid into the rocket when the fluid naturally chills down from the expansion.

Both the bottle pressure gauge and the manifold pressure gauge read excessively high on that hot summer day.

Keeping the bottle pressure below 1000 psia means controlling the external temperature of the bottle to a lower temperature. Below is a tabulation of state points along the vapor pressure curve for nitrous oxide (N2O) for common ambient temperatures. You can see that small shifts in ambient temperature can greatly affect the vapor pressure of the pressurized liquid. Keeping nitrous oxide under pressure is the key to retaining its denser liquid state. As long as the tank pressure is above the vapor pressure at that fluid temperature, you will have a liquid phase in the tank. If the pressure on the fluid drops below the vapor pressure, the liquid will begin to boil away.

  • 30 F, 440.05 psia
  • 40 F, 506.63 psia
  • 50 F, 580.33 psia
  • 60 F, 661.71 psia
  • 70 F, 751.46 psia; liquid density 48.21 lbm/ft3, vapor density 0.1145 lbm/ft3
  • 80 F, 850.46 psia
  • 90 F, 960.09 psia
  • 97.6 F, 1053.3 psia; density 28.22 lbm/ft3, CRITICAL POINT
  • Molecular weight = 44.01 lbm/lb-mol
Vapor curve for nitrous oxide over ambient temperature ranges

At first, it was thought that there wasn’t sufficient current from the lawnmower lead-acid battery we use. The summer heat can cause batteries to fail, but even after switching to a car battery, the failure to open was the same. Having a 12-volt solenoid requires greater current to actuate the solenoid valve, but it is a common standard for automotive grade parts which can be less expensive yet reliable. A current draw of 15 Amps over the long cable runs of a few hundred feet can be taxing to the firing circuit battery. This was not the cause of the problem, but it is a regular concern making sure sufficient voltage and current is available to both ignition and valve control.

To exclude outright failure of the solenoid valve, Osvaldo brought the unit home, allowed it to cool to room temperature then dry-cycled the valve from a battery to see if it still actuated. This simple test was successful and the filling valve in our nitrous oxide manifold continues to operate. At the next launch attempt, we will be prepared to chill the nitrous oxide supply bottle with an ice bath if necessary as was originally suggested at the prior launch event. Keeping the bottle pressure in an appropriate pressure range for fill operations is dependent on controlling the fluid temperature (60 to 90 F) under extreme heat or cold environments.

In researching purge solenoid valves, a second 12 VDC normally-closed valve was found and purchased. Nitrous Supply Inc., was out of purge solenoid valves but offered many alternative suppliers in the Los Angeles area. After some searching, I selected a high flow purge solenoid valve sold by Motorcycle Performance Specialties (MPS) Racing in Casselbury, Florida, for the purge solenoid valve used for venting our nitrous oxide manifold. The control panel is already equipped with the second command channel to open the vent from the blockhouse should it be necessary in launch operations. A schematic illustration is provided in this article.

mpsracing.com

Normally-closed 12 VDC purge solenoid valve from MPS Racing in Florida used for nitrous oxide applications including car and motorcycle racing.

The previous drain solenoid valve equipped with the nitrous manifold I bought was not deisgned for the full bottle pressure in the manifold so it quickly failed during initial checkouts. A manual valve was used in its place to carefully bleed out the remaining pressure in the line after the main bottle valve was tightly closed. This second solenoid valve will be used for draining the nitrous in the event of a launch scrub. Although the Contrails hybrid motor already has a small orifice and vent tube at the head end of the nitrous tank to provide slow release of pressure buildup, it is better to have a remote option to quickly depressurize the vehicle if the need arises.

Fill, drain and firing circuit for a Contrails hybrid rocket motor

With some re-plumbing of the nitrous oxide manifold to include the new vent solenoid, a soap-bubble leak check would be needed to prove the system before use. Given the significant overhanging weight of two solenoid valves, it may be wise to mount both valves on a separate plate structure to avoid excessive bending loads on the bottle connection. Design changes like this will be considered in preparation for the next launch event.

PYROTECHNIC OPERATOR TRAINING SESSION BY FRIENDS OF AMATEUR ROCKETRY

Mark Holthaus of the Friends of Amateur Rocketry (FAR) organization is offering an online training session for those interested in becoming licensed pyrotechnic operators in the state of California. The event requires registration on the FAR website and a fee paid to FAR ($10) to attend this two-hour introduction to the licensing and application process to be held on August 26th.

Friends of Amateur Rocketry website for indicating interest in pyro-op classes

Amateur rocketry in California is controlled by the same laws governing fireworks which require licensing by a state exam. The application forms and guidelines are available through the Office of the State Fire Marshal in the state of California (CALFIRE).

https://osfm.fire.ca.gov/divisions/fire-engineering-and-investigations/fireworks/

This training course for pyro-op applicants is another example of FAR and the RRS partnering to help the cause of amateur rocketry. The RRS, FAR and Rocketry Organization of California (ROC) last year met to create a joint set of recommendations to help CALFIRE improve the definitions used to govern amateur rocketry when CALFIRE they were seeking input from rocketry organizations. It is to the mutual benefit of the whole rocketry community and the public that there be more licensed pyro-op’s in amateur rocketry to both increase awareness of state laws and improve the culture of safety in our hobby and professions.

This FAR training course only serves to provide applicants with basic guidance on how to begin the application process and prepare to take the examination. Members of FAR, the RRS, ROC and any other amateur or model rocketry organization are welcome to apply. Several members of the RRS have already applied as the society continues its campaign to grow our ranks of licensed pyro-op’s at all three levels.

Completion of this training course does not substitute for any part of the pyro-op application process set by CALFIRE. As each applicant is required to pay their own fees including fingerprinting, they must also provide five letters of recommendation from licensed pyro-ops at or above the level of license being sought. After this class, each applicant must formally request these letters from state licensed pyro-ops in writing. For a licensed pyro-op to offer a letter of recommendation to an applicant, they must be willing to endorse their skills, knowledge and character to the state of California based on their personal experience with that individual. This is done through active participation at launch events through rocketry organizations having licensed pyro-ops leading their operations. Apprenticing, studying and attentiveness are all ways that a pyro-op can get to know an applicant personally and thus build confidence that the applicant is ready to have the responsibility of being licensed in rocketry. A letter of recommendation is given solely at the discretion of the licensed pyro-op which means their standards and expectations may vary significantly from others. It is important to establish a working relationship with both the society and the specific pyrotechnic operator over several projects to demonstrate skills and learn best practices through active participation.

As the RRS has more licensed pyro-ops than FAR at this time, this training course will be successful if both organizations support it. Some of the RRS pyro-ops have already offered their support as this means more people will need to become active with the RRS and conduct their projects at the MTA.

ROCKET LABORATORY AT THE COMPTON AIRPORT

Keith Yoerg announced that there is a tentative plan to create a rocket laboratory in a hangar at the Compton Airport, Although, the hangar will be used from time to time to store or service light aircraft, there is a great deal of working space which will help the RRS continue their liquid rocket project already underway. Several members of the RRS are also active with civil aviation and are members of Chapter 96 of the Experimental Aircraft Association (EAA 96). The EAA has generously supported the RRS over the last two years and we hope to continue and expand this partnership.

NEXT EVENT AT THE MOJAVE TEST AREA

The RRS has been planning the next event at the Mojave Test Area which will be dedicated to repairing some of our facilities including the adjustable rail launcher damaged in solid rocket launch explosion in August 2019. The consensus at the meeting was that we should not to return to the MTA for a formal launch event until the seasonal temperatures decrease from the excruciating desert summer. October 3rd was selected for this work event, Our hope is the weather will be cooler and we can accomplish more on that day. We may also take some time to search for more rockets planted downrange from past launch events.

The RRS may also conduct a few static firings or even a launch if member projects are ready. All such proposed hot-fire and launch activities must be proposed to the RRS president and the selected pyro-op in charge for that day. Some of our member projects such as Wolfram Blume’s Gas Guzzler two-stage ramjet and my second-build of the high-powered hybrid rocket are both still works in progress and may be ready for the early October launch date. Larry Hoffing has been working on an improved solid motor chemistry which he may want to test at the MTA.

The RRS is available for private events before that time, but one must make their request to the RRS president as usual. Some have indicated interest in returning to the site for just a few hours to recover more rockets downrange. Its our policy that at least two members be present for any excursions to the MTA and the RRS president must be notified in advance.

IN CLOSING

Some topics were not able to be covered including the overview of the new RRS Constitution as it gets ready for administrative membership review. Also, facility improvement plans at the RRS MTA including new restroom facilities and blockhouse should be discussed.

The next RRS meeting will be held by teleconference on September 11, 2020 as it is unlikely we will be permitted to return to the Ken Nakaoka Community Center by then. We hope everyone continues to stay safe during these days of the pandemic and try to stay in touch as we are planning another event at the MTA for October 3, 2020.

If there are any questions, please contact the RRS secretary.

secretary@rrs.org


November 2019 meeting

by Dave Nordling, Secretary, Reaction Research Society


The Reaction Research Society (RRS) held it’s monthly meeting on November 8, 2019 at the Ken Nakaoka Community Center in Gardena, California. The society had a full agenda plus our annual nominations for the executive council. Frank Miuccio attempted to establish a teleconference at the meeting to connect our director of research, Richard Garcia, and an outside organization that wanted to address the society. This teleconferencing was successful and the society will consider having more of these to help bring in more participants on special topics.

[1] Treasurer’s report on membership and dues status

The RRS treasurer is conducting a review of our membership roster to not only update our records with the many new members that have joined us this year, but also to determine the dues status for each. Like in all non-profit organizations, regular annual dues payment is essential to keeping the society funded for the many projects we do and are planning. Upgrades at the MTA are also impacted if our membership does not keep their dues payments current.

Chris’s report was not ready at this month’s meeting, but he will be soon notifying some of our delinquent members that they need to keep their dues paid to remain in active status. It is the duty of all RRS members to keep their contact information current with the RRS treasurer. The society can not be responsible for missing communications if our members do not do their part by making communication possible. Also, members who are not current in their dues payment risk losing their active status with the society.

treasurer@rrs.org

I have always paid my dues to the society on January 1st of each new year. This greatly simplifies the process and I need no reminder to do so. Membership dues ($40 USD per year) to the society can be paid through the “Donate” button on the RRS.ORG website which links to Paypal.

We remind all of our donors and those paying dues in this manner to include your name in the “Notes” section along with the purpose of your donation. Without including your name, the RRS can not tell who has paid their dues.

The RRS.ORG website has more information on this subject. For any questions, please contact the RRS treasurer.

[2] Update on the next RRS MTA launch event with LAPD CSP and 99th Street Elementary School

Frank, Larry and Osvaldo are in the middle of another class, this time with 99th Street Elementary in partnership with the Los Angeles Police Department (LAPD) Community Safety Partnership (CSP). The class is going well and the final launch event is still planned for Saturday, December 7, 2019.

At this same launch event, we are also planning to host the University of Southern California’s (USC) Rocket Propulsion Laboratory (RPL) with the launch of their latest solid motor powered rocket. USC has been making continuing progress even after their landmark flight to be the first university-built rocket to break the von Karman line into space.

[3] Preparations for the 2020 RRS symposium

With the society approving the symposium for our fourth year in a row, Frank is working with the Ken Nakaoka Community Center to establish the date. Tentatively, the 2020 RRS symposium will be held Saturday, March 28, 2020. The society has decided to try to hold the symposium earlier in the year to avoid the onset of the summer heat which makes the event very uncomfortable in the absence of climate control at the Ken Nakaoka Community Center.

Future site of the 2020 RRS symposium

More information on this subject will be posted as it develops. Our symposium coordinator for the 2020 event will again be our society vice president, Frank Miuccio.

vicepresident@rrs.org

[4] RRS solid propellant making classes at the MTA

The RRS has been approached by an outside organization about conducting solid propellant motor making classes. Many years ago, the RRS held a few of these events which became very popular. The RRS has not yet decided if we will restart these classes, but a group is examining the possibility and will report back to the society on the viability of such a project.

composite grain, before and after

[5] 2020 Constitutional Committee progress report

pending… carried over from October 2019 meeting report

[6] Annual elections for the RRS executive council

As required by our Constitution, the RRS appoints an election chairman to oversee and execute the process of nominations and balloting for each of the four executive council offices for new terms starting in the new calendar year. Larry Hoffing, again, agreed to be our election chairman for this cycle.

Nominations were held and were open to our administrative membership. Nominations were received and our election chairman will be sending out ballots by email. This is another good example of why all members should keep their contact information current and remain in active status with the society. Balloting will be closed prior to the next monthly meeting in December and the results announced at that meeting.

[7] CSFM committee on amateur rocketry

Last month, the RRS and Mark Holthaus of the Friends of Amateur Rocketry (FAR) met to discuss a list of proposed changes to the California State Fire Marshal’s (CSFM) definitions that govern amateur rocketry. This small group was intended to be made from active amateur rocketry groups around California to help advise the CSFM subcommittee on changes that would help improve regulation of amateur rocketry and make needed clarifications to help all groups continue to operate safely and legally.

from left to right, Mark Holthaus (Treasurer of FAR), Osvaldo Tarditti (RRS president), Larry Hoffing (RRS events coordinator), Dave Nordling (RRS secretary) meet to discuss proposed definition changes to CSFM laws governing amateur rocketry, 10/15/2019

The RRS and FAR held a second meeting at the Ken Nakaoka Community Center which included David Reese of the Rocketry Organization of California (ROC). ROC members, Chris Kobel and David Reese have been very helpful in providing helpful improvements to how the certain classes of rocketry are defined.

This amateur rocketry committee will be presenting their collective suggestions to the Fire Marshal in early December 2019. The RRS, FAR, ROC and the rest of the amateur rocketry groups in California are glad to assist the CSFM office in making these suggested updates.

[8] Social media updates

There was no report from Alastair Martin and/or Bill Janczewski this month for social media improvements for the Reaction Research Society. We hope to have more to discuss in the next month on this regular topic. As always, members are welcome to offer their advice and proposals to either or both of our media coordinators.

Alastair and I did have a conversation about expanding our following on Instagram. We will continue to show the highlights of our events and the people involved, but I hope to bring more technical content which seems to be our primary source of interest.

See the RRS on Instagram: reactionresearchsociety

Alastair and his production company, Production Tribe LLC, has created yet another podcast in the “Before SpaceX” series with special guest, rocket propulsion expert, author and RRS member, James R. “Jim” French. RRS secretary, Dave Nordling, and RRS director of research, Richard Garcia, supported this excellent discussion about the American Rocket Company (AMROC), a space start-up company in the 1980’s and 1990’s. The show is still in editing and will be posted very soon his website.

https://podcasts.apple.com/us/podcast/rocket-talk-radio/id1474556513

[9] Compton Comet STEM club formation and program

Several students from the Compton College STEM club attended the November meeting of the RRS along with their advisor and fellow RRS member, Kent Schwitkis. Jamie Alvarez, the STEM club president was in attendance. The Compton Comet is the project name for the liquid rocket projects that the Compton College team is working on. There are about 20 students in the group and the RRS is glad to support this team and the other university teams looking to compete or at least expand their range of practical skills.

The Compton Comet team has been holding meetings at Tomorrow’s Aeronautical Museum (TAM) at the Compton/Woodley airport. They are planning a few trips to inspect launch and additional hardware assembly sites and make a report back to the RRS at the December 2019 meeting. RRS member, Waldo Stakes, has also been an important part of this program.

The STEM club is having another Estes rocket competition later this month. The first of these events was very successful. Part of the experience is getting practice with the simpler rockets and using OpenRocket simulation software to make and verify predictions.

IN CLOSING

RRS members, Frank Miuccio, Alastair Martin and Kent Schwitkis contributed to this report. The next RRS meeting will be December 13, 2019. If there are any corrections or additions to make for the monthly report, please contact the RRS secretary.

secretary@rrs.org


In Memoriam: Brandy (Robert “Bob”) Bruce-Sharp (1953-2019)

by Larry Hoffing, Events Coordinator, Reaction Research Society and Korey Kline (contributing)


In January 2019, Brandy (Robert “Bob”) Bruce-Sharp passed away. As reported by Mark Clark and Tripoli, Brandy went quickly from non-Hodgkin’s lymphoma. At the BALLS 28 launch this past September, Brandy and wife Abbie’s ashes were launched and spread in an Aerotech M1939 rocket.

from left to right; Robin Meredith, Jim Bornwell, Jane (Brandy’s sister), Mark Clark, Gary Rosenfield

Bob was my friend and fellow student at Los Angeles (Robert H. Goddard) Pierce College rocket club that I founded in the early 1970’s. Around this time we met a high school kid named Korey Kline, he was only fifteen at the time but already a veteran shop mechanic. His high school rocket club, inspired by the Pierce club, found a Korean War five-inch diameter HVAR rocket at a vacant military recruiting office.

Bob Bruce, Michael Gill and Larry Hoffing of the Robert H. Goddard Rocket Society of Pierce College in Los Angeles
Bob Bruce and Larry Hoffing stand at the launch rail for a row of model rockets in the 1970’s

We proceeded to convert it to a zinc-sulfur rocket which required bolting some ports of the multiport nozzle shut, adding fins, and a payload section- I think Bob’s mother sewed the parachute. I did most of the machining in the school’s metal shop while some of the welding students added the fins. I remember hauling the thing, which weighed about 40 lbs unloaded, for a show-and-tell presentation at the Pacific Rocket Society (PRS) which met at the (now defunct) Northrop Institute of Technology in El Segundo.  B. J. Humphreys was the PRS president at that time.

B.J. Humphreys, past president of the Pacific Rocket Society and builder/pilot of the first rocket-powered wheelchair
Bob Bruce and Larry Hoffing in September 1972

Bob named the rocket “Bifrost” (pronounced “BIF-roast”) which is the old Norse term for the rainbow bridge to Asgard.  Our mission was to fly Bifrost at the Mojave Test Area (MTA) near the town of Cantil, CA, where the RRS, FAR and Polaris Inc. (under the direction of Dave Crisalli) currently test. In those days the bunker was covered with telephone poles that had been trucked out by RRS member John Mariano and his cousin in the 1960’s.  There’s a pile of them still laying at the MTA to this day! Access to the site was by dune buggy. The yellow blockhouse with its ballistic glass windows still stands at the RRS MTA.

This sets the scene for the launch of the missile on a wooden home-built Bruce rack – 3 aluminum fins had been welded onto a cowling over the casing as we hadn’t realized the launch racks were built for four-fin rockets (Hint: let your new members know about the launch rack configuration ahead of time). The PRS had most of the pyro-op’s at that time.  The PRS pyro-op in charge was afraid we’d blow up the rocket and surrounding area so he made us fill the casing half way with sand. It must have weighed 80 lbs.

5, 4, 3, 2, 1, ignition! The rocket lifted off, flew a short distance, and crashed. The failure to go the distance was attributed to the multi nozzle ports, we didn’t bolt enough of them shut to build pressure. There is a photo of it flying, I gave it to my machine shop professor, and unfortunately don’t have a copy.

Bob was a consummate modeler and draftsman. He won top prize from Estes in 1972 for his remote control Space Shuttle which was a thing of beauty.

Bob Bruce wins first prize in the Estes rocket modelling competition for his space shuttle design

Bob started a rocket kit company with Korey in the mid 1970’s called California Model Rockets, a precursor to large/high power rocketry. One of my biggest regrets in life is not joining them in this endeavor. Bob and I had previously invented the largest model rocket in the world we called “The Wopper” . The California State Fire Marshal rules at the time was that model rockets had a weight limit of 1 lbm including the motor, so designing it was no easy task. We got the brilliant idea one day of enclosing foam rings and horizontal balsa slats with construction paper to create giant tubes. The biggest F-sized motor at the time was F-100’s made by Flight Systems Inc. The large model rocket flew spectacularly to about 300 feet.

Bob relocated to Arizona sometime in the 1980’s to pursue drafting, and afterward I lost touch with him. However, my memories are vivid of us mixing and testing “Blue Knight” candy fuel (sugar motors), and launching model rockets at Half (Hof) Mile Square in Fountain Valley, CA (a former air ship site) with the Westchester YMCA Rocket Club. Hof Mile was a trip. Wheeled sail cars raced around on the landing strip as we launched rockets. We’d even have to pick up the gate keys from the local base commander. It was here while looking for a rocket in the tumbleweed that I stumbled upon a huge, beautiful red fox when the area was still wild back then.

Korey remembers Bob as his earliest mentor for rocketry. “By example he taught me to think outside the box!” Korey says he was only fifteen when he met us and we (and his mother) had to drive him to the rocket club meetings. Bob also introduced Korey to B. J. Humphreys of the PRS and Gary Rosenfield at the RRS.

One project we all worked on together was building the Hang Loose Bi-Plane, a one-man glider made of bamboo, wood, wire, & plastic sheeting. We cut and bent bamboo spars for the airfoil wings at Korey’s house over his mom’s gas stove. The glider had around a 14-foot wingspan and a 12-foot rudder.  It was Korey that drew the short straw to fly first. With Korey hanging in the center and the two of us at the wing tips we took off running from the top of a hill in Granada Hills. Korey lifted off about 10 feet in the air and started sailing down towards a school fence at the bottom where he bailed out before hitting.

Another thing we did that I can mention now was flying model rockets out of Korey’s in ground swimming pool. We sealed the motor and electric igniter with wax and lowered the rocket and launch pad to the bottom of the pool with the controller on deck. All I can say is that a sea launched rocket is pretty cool when it breaks the surface!

There were many interesting things we did with Bob and we remember him dearly. He loved his muscle car too, I remember other drivers on the 405 Freeway coming along side trying to race us, but Bob wasn’t a speeder, just a tinkerer. I often wonder what became of that car.

Mark Clark further reports on the Tripoli members forum:

“Brandy [aka Bob] started flying rockets in the 1960’s and at Miles Square Park and very early Lucerne launches. Getting into high power in the late 1980’s, he had moved to the Phoenix area and was a founding member of Arizona High Power Rocketry Association (AHPRA).

Brandy started Sonic Systems that locally sold reloads and nationally 7 1/2″ sized mosquito-type nosecones. Those who saw the ads in High Powered Rocketry (HPR) magazine will remember them. Brandy was also involved with the BALLS launch for the 18 years AHPRA was involved and a frequent poster to these forums. Brandy was a great friend for nearly 30 years.”

www.ahpra.com

www.ballslaunch.com

Brandy “Bob” Bruce-Sharp at the BALLS 25 launch with his up-scaled Centuri Enerjet 2650 rocket