MTA launch event, 2018-07-21

The Reaction Research Society (RRS) held a launch event at our private Mojave Test Area (MTA) on Saturday, July 21, 2018. As I came into the site, I noticed our front gate which will be the site of our new sign to arrive very soon.

Follow that car. Turn left to go to the RRS.

Jim Gross was our pyro-op for the event. Many of us arrived early so Jim and the rest of the RRS had time to review the projects we wanted to hot-fire and fly if possible that day. Also, it was new members’, Michael Lunny and Bill Behenna’s first trip to the MTA. I think there is no better way to sell our membership on the benefits of the RRS than your first trip to the MTA. It worked for me!

Jim Gross, our pyro-op for the day

We were glad to host another group of students from the Watts area schools with the support of the Los Angeles Police Department’s (LAPD) Community Safety Partnership (CSP).

LAPD CSP on Facebook

It was a challenge to hold this event in July in the Mojave desert, but the kids and staff seemed to withstand the 100-degree heat quite well with lots of water and bringing ice. We gave our safety briefing to everyone and explained the do’s and don’t’s for the event. RRS member, Matt Tarditti, was there helping with getting people shuttled around to the places necessary including moving our pyro-op, Jim, and his apprentice, Dave Nordling, back and forth between the bunker and the alpha launch rails. Every step adds up in the heat and it’s wise to work as smart and efficiently as you can. The heat got to me and I had to take a pause into the air conditioning of my truck. Despite my best efforts in hydration, it was still overwhelming. It is a feeling that many of the RRS know all too well at some point in their time with the society at the MTA.

Matt was kind of enough to continue to assist Jim to complete the launch series with the alphas. Even, Jim Gross, who has been a resident of the high desert for many years, was having a tough time in the high temperatures and very low winds of that day. We had extremely low winds which made for great rocket launching weather, however with the building clouds above holding in a lot of the heat of the day, it was a real challenge for everyone to fight the stifling heat. The RRS conducts events year-round, but some months are harder than others.

Matt Tarditti and Jim Gross under the hot July sun at the MTA

LAPD does a great job in preparing these kids in the weeks ahead before this event. Often, this is many of the kids’ first trip into the Mojave desert. The stark beauty of the landscape hides the subtle dangers of snakes, spiders and the ever-present risk of heat stroke (even at 10:00 AM!). The RRS educational program is both fun and informative and through preparation everyone can make things safe. The kids were quite ready for the final event in the RRS educational program which is seeing their painted and assembled RRS standard alpha rockets take flight.

Our goal was to get the LAPD CSP rockets in the air first so that those less experienced in the desert heat can go on home once complete.

Michael Lunny, Frank Miuccio and Larry Hoffing stand among the students during the safety briefing at the George Dosa building

We had seven standard alphas to be launched, all painted by the students as their way to personalize their team’s flight. As always, the RRS reminds our classes that painting the bodies is nice, but since they return to the ground without a parachute, painting the fins in a bright and observable color matters the most!

Seven alphas in the rack from Watts, plus Larry’s customized alpha with the wires sticking out of the payload tube

After the sequential launch of all seven alphas, it was decided that it was unwise to let the kids hunt for their rockets downrange. LAPD and the Watts kids went home, leaving the rest of the RRS membership to attempt the other projects we had ready for this launch day. RRS member, Michael Lunny, shot a great video of one of the alpha launches from the bunker. I hope to get a still photo from that video and get it posted to the RRS YouTube channel. We have a few micrograin rocket flights on YouTube, but we hope to add more content there soon. You’ll notice our name is truncated to ending in “Soc”

Reaction Research Society on YouTube

Richard Garcia brought his home-built rocket that is adapted for the sugar motor he tested at the 2018-06-02 event. He made three motors, one as a simple end-burner, the other two were cored. The plan was to fire conduct a static firing or two with his test motors and if all looked good fly the third motor in the rocket from the RRS rail launcher.

Richard Garcia stands in the assembly area by his golden rocket built for his custom sugar motor

Richard brought back his vertical static fire stand that bolts to the larger RRS frame. Although his thrust stand is not outfitted with a load cell (yet), it does give him the opportunity to safely secure his test motors and visually compare the results and time the burns.

Richard Garcia’s sugar motor held down to his vertical thrust stand for static fire

Larry Hoffing made a parachute system in his RRS standard alpha. His system was a little different from Osvaldo’s as he required a second firing line to fire a smoke tracer he put in. His son, Max, was there to help get things ready for flight as we included Larry and Osvaldo’s alphas into the launch sequence.

Larry’s alpha payload system being made ready for flight, 2018-07-21

Also, Larry had attached a whistle on one of the fins. Although this would impart a spin to the alpha, we have had past success flying a single keychain camera on the outside of a single fin and maintaining good flight stability despite the nauseating rapid spin seen in the footage from these externally mounted cameras.

Larry’s alpha with a whistle mechanically fastened to a single fin, 2018-07-21

Larry’s alpha had some problems at launch with the payload deploying early and having a failure to ignite the micrograin booster. This was a first for me in the three years I’ve been with the RRS. After tracking all other contributors in the firing circuit and procedures, it was determined that it was a bad electric match. With Larry’s payload requiring repackaging, it was decided for expediency, to move the nozzle and dump the micrograin propellant for a disposal burn. Larry will be able to re-use his alpha hardware, but it will have to wait for next launch.

Next up, was Osvaldo’s red colored alpha with his alpha with a parachute system built in it. Osvaldo made some minor improvements to the circuitry and this was to be his second flight. He also had a commercial telemetry package within his payload section.

The first flight of his original parachute design for the alpha on 2018-06-02 was a sterling success. Despite some overheating of the parachute from the black powder deployment charge on the initial flight, the rocket still coasted down very gently such that it laid neatly on the ground and a shovel wasn’t necessary for recovery.

The flight of Osvaldo’s second alpha was similarly successful in that the break-wire system and deployment mechanism operated properly, but the parachute itself failed to unfold due to tangling. The rocket’s descent even with the folded parachute was able to be spotted and Osvaldo recovered all pieces of his second flight.

Osvaldo inspects the second iteration of his alpha parachute system, 2018-07-21

Also, as an added bonus, Osvaldo was able to fit a data system to measure the flight acceleration. As the whole package survived in tact, it will be very interesting what it was able to measure from within the tight confines of alpha payload tube near the nose.

Osvaldo’s data package survives the flight, a little singed, and despite a folded parachute

There has been a lot of great progress in alpha parachutes. Both Larry and Osvaldo have made great progress in this important area of alpha payloads. With the continued efforts of our RRS membership, I think its reasonable to expect that we could offer a standard alpha parachute package for our future events once we demonstrate a series of successful flights, settle on the design and figure the added cost.

Richard Garcia’s project having two successful static firings gave him confidence to try to mount and fly the third sugar motor. After having some initial integration problems and a rail button coming off, he was able to get his golden rocket ready for a launch on the RRS rail launcher.

Our rail launcher is a great asset to the society, but it is a very heavy and sturdy device that requires two or three people to assemble and make ready. Also, the pin system that connects the rail to the stand fits very snugly and sometimes requires a lot of elbow grease and persuasion (perhaps with a rubber mallet) to get the right alignment of the holes. Despite the high heat, we manage to get things ready for Richard’s flight.

Underslung launch rail system at the RRS MTA, assembled and ready for Richard’s flight, 2018-07-21

Richard’s flight was on one hand a little underwhelming as his sugar motor did not produce a great deal of impulse, but it did manage to propel itself up the launch rail, get clear before neatly turning back to the ground in a low-speed, but very steady and stable flight. Although his rocket only made it 50 yards downrange, it can be seen in the flight video that his rocket was stable throughout the whole low speed which is a testament to Richard’s good construction of a very aerodynamic and well-balanced vehicle.

Interestingly, the rocket landed almost perfectly on its nose. Despite the rough landing, the nosecone wasn’t damaged and many parts of the vehicle were similarly undamaged.

A very short, but extremely stable flight off the rails for Richard’s golden rocket with a custom sugar motor

Richard safes his payload system as he inspects the recovered rocket.

Richard will be working on increasing the impulse from his motor, but he can be very confident in his vehicle design. With a little rework on some of the parts, I think he should have a very impressive flight at the next launch event.

Osvaldo has put a lot of work into the horizontal thrust stand that I started. To be able to static fire an alpha rocket to measure the impulse, we have to accomplish two more things.

The first is to get a better mechanical guide for the alpha prevent sideways motions or “wagging” during firing. The frame of the horizontal thrust stand fits just fine to the concrete slab foundation and is very secure, but the 3-foot length of an alpha could create quite a wicked angular load on the load cell. Osvaldo and I had discussed a few design concepts and he brought his design to the MTA. Given the time constraints of the launch events that came before and the stifling heat, we had no time to attempt a fit check of an alpha rocket in the thrust stand.

The second thing is to try to calibrate the load cell to make sure the S-type load cell is still reasonably within its original factory calibration. Osvaldo brought in a home-built frame with a hydraulic jack and pressure gauge which can reasonably approximate a force by the pressure and piston area relationship. We didn’t have time to try this setup, but this device can be demonstrated at home if Osvaldo has time before the August 10th meeting.

hydraulic jack testing rig for verifying the S-type load cell calibration

hydraulic jack-based force tester with high pressure gauge attached

The horizontal thrust stand was not ready for the event due to a lack of cabling and a hardy computer to manage the data acquisition. Many of us are reluctant to bring our personal laptops to run the data acquisition in the abrasive sandy dry lake environment at the MTA. Chris Lujan at the July meeting talked about using a simple Arduino Raspberry Pi computer as a low-cost alternative to gathering and processing the data. Hopefully, we will get a simple device programmed to operate with the load cell as we conduct our hot-fires from this horizontal thrust stand.

There still is a lot of work to do in getting the horizontal thrust stand working. With more hard work, the RRS will have this project working soon, hopefully by the next launch event in the fall. We’ll post updates as this project advances.

One final note on the event is that the RRS will be posting a few things on Instagram once the secretary has time to get things started. The RRS is brand new to Instagram so we hope to expand our presence here to better show everyone what we do.

Follow RRS on Instagram

The RRS will discuss the launch event as a whole at the next meeting on Friday, August 10, 2018. There were a lot of great things we tried at the event, but there were also a lot of logistical things we can do better next time. Also, it would be a good time to review some of the material improvements that we ought to make at the MTA to better handle the projects we expect in the near future.

Please join us on August 10th!

July 2018 meeting

The RRS held its monthly meeting on July 13, 2018 at the Ken Nakaoka Community Center in Gardena. We got a late start (7:45pm), but we were very well attended. New member, Wilbur Owens, brought a friend of his from the Compton Aviation Museum. The RRS accepted a new student member, Bill Behenna. We also had two newcomers from Caltech stop by who were interested in joining the society.

Our July 2018 meeting gets started

We welcomed our newcomers and started our meeting with a very full agenda. Frank brought a new air launcher device he built which operates by a hand piston. We didn’t have time to discuss it but Frank is adding more teaching tools to our educational program to show how much fun even simple rocketry can be.

Frank’s hand pump air rocket launcher

We went a little out of order from the agenda, but we managed to cover all topics in this meeting that ran very late.

[1]
The first topic of the agenda was to confirm to everyone that the next launch event at the MTA will be on July 21st. We will host a new group of students completing the RRS educational program. This is another fine group of students from the Watts area and we are grateful to the LAPD CSP program for their continued support of this recurring and successful project. Frank and Larry noted that we will try to get this event started earlier to attempt to avoid the scorching heat of mid-day.

Also, we had a discussion about how to improve the society communications in the wake of a last minute unforeseen change of schedule for a launch event. This was an exceptional case and unlikely to happen again soon, but it did highlight an important aspect of RRS operations which is communicating with our membership. It is very, very important that all active members have their emails with the RRS secretary as the duty to send out the mass email falls to me. There are two ways that the RRS secretary communicates to our active membership:

    (1) the email list for meeting agenda notices

I have been building this email list and maintaining it, but I know that I am missing some interested parties. The communication between our membership is still important. Please be kind to other members and pass on the notices and encourage everyone not receiving their emails to let me know to make the proper inclusions. This is a constant work in progress and I am thankful to those who help make this happen.

    (2) posting of all launch event dates is on the RRS website

I regularly update the launch date information under the “Forum” section of the RRS website under the “Launches” tab. Modifications to the RRS.ORG website were discussed as a means to make a clearer way for anyone to see if we are “GO” or “NO-GO” before the launch event. I’m not sure what Chris Lujan has in mind, but we will discuss this issue further as time goes on. Effective communication to our membership is important. The use of other social media platforms like Twitter or Facebook were suggested, but it is not clear how widely used these platforms are with our membership that spans many generations of technology adoption.

[2]
The second topic from the agenda was my proposal for the RRS to acquire a road sign. This has been approved by the society and the cost is not unreasonable. Placement of a simple sign at the first gate leading into the RRS’s private testing site, the Mojave Test Area (MTA), will make it easier for newcomers to be sure they are going directly to our site adjacent to the Friends of Amateur Rocketry (FAR).

RRS sign at the MTA entrance

The RRS does have a great sign built on top of a metal arch right at the entrance to the MTA built by member, George Garboden, but the society felt a second smaller sign (24 inches tall by 36 inches wide) at the first gate would be another helpful feature to show newcomers the way in.

Proposed road sign for outside the first gate to the RRS MTA

Placement of the sign will be about 10 feet behind the barbed wire fence about 6 feet to the left of our larger metal gate. This should assure good visibility to those reaching this fork in the road.

We had a substantial discussion about the sign content. The results of this discussion are in the sample posted from the website. We also had a substantial discussion about mounting of the sign and the desire to have a solid structure that can withstand years of the gusting winds of the Mojave. The sign quality chosen was of the highest quality to assure a long life under the corrosive effects of Koehn Dry Lake. Richard has suggested that the sign include the RRS logo which I will look into with the vendor. The RRS has given the authority to proceed on this task.

Further to this subject, Richard Garcia has suggested the sign be accompanied by some kind of metal sculpture representing a rocket. This would nicely complement the sign, but this is a topic beyond the original scope of the meeting. In times past, George Dosa had a large metal pipe embedded vertically into the dirt which used to have fins on it like a rocket reaching the end of its ballistic flight. I think the pipe is still there but the fin decorations have been long removed.

[3]
The subject of Saturday seminars was only briefly discussed at the July meeting. In past meetings, the RRS has had special presentations made by invited guests. These are very enjoyable to our membership, but they do often run long and consume a lot of meeting time. To be more effective in our meetings, it was recommended that for lengthy presentations, the society ought to schedule a special meeting for our membership on a Saturday morning at the Ken Nakaoka Community Center in Gardena. This way, those of us with day jobs can come to the center before the heat of the day and enjoy the presentations at our leisure. The RRS has identified several potential candidates for these “Saturday seminars”, but thus far, the first session has yet to be scheduled. We will revisit this topic in later meetings. Our vice-president, Frank Miuccio, will be the point of contact on this topic going forward. Updates on this topic will be posted on this website.

[4]
The RRS director of research, Richard Garcia, discussed his progress with the RRS standard liquid rocket. This has been garnering a lot of enthusiasm as many universities have been pursuing similar goals.

RRS director of research, Richard Garcia, explains his liquid rocket prototype at the 75th anniversary symposium

The RRS has decades of experience in building these powerful but simplified launchers, but in recent times our activity in this area has been slight. Richard has made a lot of the key drawings, but is still working to finalize the dimensions and proceed with construction. The RRS membership at the meeting had the chance to review his current drawings and make suggestions. Richard will proceed with completing the design and drawings and with the RRS support begin with selection of suppliers, machinists and construction.

Richard’s rocket will use the RRS 15×15 rail launcher that we have at the MTA. The 16-foot rail length should be sufficient to guide the rocket to a stable initial flight. Further aerodynamic study will be needed to finalize the design. Preliminary pictures and features of the design will be discussed in future posts.

[5]
The next topic was the subject of pyrotechnic operators and the RRS’s mission to qualify more members as licensed pyro-op’s to expand our ability to conduct events and improve the knowledge of our membership in this important aspect of safety in operations. What we do can be very hazardous, but with the attention to detail and commitment to safety that we have shown over the decades of our history, we are blessed to not have ever had a fatality and very likely to continue this tradition long into the future.

The RRS has identified a few members including myself who are committed to starting the process of becoming a pyro-op with the California State Fire Marshal’s office. The first step is making a request to the Cal State Fire Marshal for their latest package of information which includes a PDF copy of the latest laws and regulations that every pyro-op is expected to know.

California State Fire Marshall rules on fireworks also governs amateur rocketry

In parallel, the RRS is creating a standard package of information for members that include these state provided materials and other resource materials deemed useful by the RRS to properly educate any current or aspiring pyro-op.

The second step in the process is getting five letters of recommendation from licensed pyro-ops of the same class or above the class level you are applying for. The first level of licensing is Rocket Class 3 which is what our new pyro-ops will seek. The final step is paying your exam fees to the state of California, sitting for the exam, passing the exam and getting your license information from the state. It is very important that our membership strive to keep their state license current and not let it lapse. The RRS is indebted to our pyro-ops for making a big part of what we do possible and safe.

Letters of recommendation require a licensed pyro-op to vouch for your abilities to conduct safe operations and a demonstrate sufficient knowledge and competence in all relevant areas for rocketry all in a signed document sent to the state of California. It is not an easy thing to ask of someone who doesn’t know you well. It is not uncommon and very reasonable for many pyro-ops to refuse a request for a letter of recommendation. It is the requester’s sole duty to prove themselves to each licensed pyro-op that they are worthy of their endorsement.

In the past, the RRS had many pyro-ops and by attending MTA events and participating in meetings and other society events, RRS pyro-ops would get to know you and could more easily vouch for your skills to the state. Osvaldo has been successful in securing his letters of recommendation and sending his application to the state. He is now waiting for instructions on when to sit for his examination. This is a process that can take months.

I have also been fortunate to secure letters of recommendation from licensed pyro-ops, but I am still in the process of qualifying in the eyes of other pyro-ops I have asked for their endorsement. It was suggested that the new class of RRS pyro-ops combine our efforts and share our resources. It was also suggested that we ask some licensed pyro-ops to make a presentation at an RRS meeting or special event as a way of educating us in the practical knowledge that they have gained as a pyro-op. Perhaps through these sessions, more of our members can get the letters of recommendation necessary to begin the process.

Dave Nordling assists in the loading of an RRS alpha into the rails under the instruction of pyro-op, Dave Crisalli

It is my intent to encourage the RRS to adopt a more unified approach to gaining this knowledge either by seminar or by apprenticeships that could be offered by other rocketry groups such as Rocketry Organization of California (ROC). I took the action to approach ROC and other amateur rocketry groups about sending a set of our aspiring pyro-op members to a launch event or special training session in the hope to achieve wider endorsement and help build the RRS roster of pyro-ops.

[6]
As required since the start of the SuperDosa project, I presented my quarterly update.

To remind everyone what the SuperDosa project is, it is the society’s desire to retake the amateur rocketry altitude record lost in 2004 to CXST. At a height of 380,576 feet (116 km), this is a daunting challenge, but we have a substantial amount of knowledge and experience from our past members to drawn upon. Many boosted dart designs, similar to the SuperLoki or Viper III, are capable of reaching this altitude range above the von Karman line of 328,083 feet and 4 inches (100 km).

Boosted Dart – Viper IIIa

We have decided to begin a long process to build a boosted dart type of rocket and launch it from Spaceport America or Blackrock to retake the amateur rocketry altitude record by aiming for 400,000 feet (121.92 km). This will take several attempts and perhaps a few different designs, but eventually we will succeed.

For comparison, USC recently set an altitude record for a university built rocket of 144,000 feet (43.89 km).

Some of our newest RRS members just recently fired a full-scale solid motor at the MTA with the aim of reaching 150,000 feet (45.71 km).

The vehicle that succeeds in meeting this challenge and restoring the RRS title will be named after long-time member and a mentor to many in the RRS, George Dosa. George was the first licensed pyro-op in California for rocketry and wrote large portions of the rules governing our hobby. George is still active with the society and we are showing our gratitude by using his name for this project.

SuperDosa-mockup (2)

George Dosa at the 75th RRS symposium in April 2018, third from left

Substantial progress has been made by Larry Hoffing in making sample batches of the RRS standard recipe, although I understand he had to make some deviations to the mixture due to lack of particular chemicals necessary for plasticizing and release from the mold. Addition of accelerants such as iron oxide is not necessarily part of the RRS standard mixture, but it has been used in other mixtures to increase burn rate with good results. The RRS is in the process of re-establishing suppliers for the key materials such as the HTPB binder and the ammonium perchlorate and aluminum powder of different sieve sizes.

Substantial progress has been made with some of our new members and their booster design which was unsuccessfully tested on June 7, 2018 at the MTA. The mixing procedure and some of the equipment necessary for casting larger grains will surely be useful in this sustained effort to build motor of this size. Part of the issue was poor subscale testing to get burn rate data.

The RRS is working on completing a ballistic evaluation motor (BEM) to attain proper propellant curve data which should benefit all society projects using the same solid mixture. I have not had any luck with the getting our top and bottom plate assemblies yet, but I hope my machinist will be available soon to complete all parts well before the next quarterly update.

RRS ballistic evaluation motor design concept

Some of the parts are ready. Richard Garcia was kind enough to turn out the initial set of nozzle pucks of variable throat sizes. I have the fasteners and gasket materials which need to be cut for the seals. The RRS has a 5000 psig pressure transducer and some of the fittings, but we need a short length of clean stainless steel tubing to make the pressure connection. We have a data acquisition unit, but the wiring harnesses needed to be made to route back to the blockhouse.

Chris Lujan has recommended that instead of bringing someone’s personal laptop we get a simple computer like a Raspberry Pi unit to do the data crunching and output the results. The desert environment can be very damaging and it would only take a simple computer to manage the data and output the results. Chris will work on this hardware and software aspect of the data acquisition and processing.

RRS BEM graphite nozzle pucks, courtesy of Richard Garcia

More progress on the SuperDosa progress will be presented in October at the next quarterly report.

[7]
The next topic of discussion was led by Alastair Martin. Alastair is a very active member of the RRS and the Mars Society. He is a filmmaker and producer and brings many talents to the society.

Alastair Martin records elements of Richard Garcia’s rocket candy propellant manufacturing process at the RRS MTA, 4/7/2018

Alastair discussed the necessity of the RRS embracing a larger social media presence. The benefits are that the RRS can reach a wider audience, particularly in the younger demographics. Alastair recommended that the RRS open an Instagram account and do work on improving our Facebook page that is already online. Although there are other social media platforms, it was these two services that he has the most success in his businesses.

The use of Instagram can make the society better able to show the world a glimpse of our activities from a select group of our active membership. Instagram is useful for conveniently and frequently posting photos and short videos and is virtually instantaneous. This nicely complements the website we currently use. The RRS approved the opening of an Instagram account.

Once you have the Instagram smartphone app loaded, you can find us at our Instagram ID which is our full name without spaces:
Reactionresearchsociety

Our society treasurer, Chris Lujan, generated the account and he will be primarily responsible for the RRS Instagram account. The executive council, director of research and events coordinator will be the first members to have permission to post photos to the RRS Instagram feed. The RRS will consider allowing other trusted members to post on our new Instagram account as we go on.

Reaction Research Society on Instagram

The RRS has a Facebook page. I think it is our vice-president Frank Miuccio, that maintains this site. The RRS will strive to post more often on Facebook which is widely used by many people worldwide.

RRS on Facebook

As secretary, I will continue to maintain our world-wide web site, RRS.ORG as our primary means of advertising ourselves and posting updates to activities.

[8]
After some debate and discussion, the RRS has decided to proceed with holding the 2019 RRS symposium in April next year. Although it is a substantial commitment of resources and money by the society, the 2017 and our 75th anniversary symposium were successively larger hits with our public audience. We will strive to improve our symposium based on the lessons we’ve learned and use the momentum of enthusiasm built from two very successful events. However, it was agreed that after the 2019 RRS symposium, the society will not hold another for two years. Our commitment to what will be the 2021 symposium will be pending until the year before.

The 2019 RRS symposium is coming in April.

With this decision, setting the date and starting our long process of contacting industry, academia and government speakers will begin. There will be more discussed on this topic in future meetings. We are excited to confirm another symposium and hope to make this event even better than before.

[9]
The agenda had originally stated that our next launch event at the MTA with LAPD CSP will be Saturday, July 21st. We circled back to this topic reminding everyone that the safety briefing will be conducted at 10:30 AM and the launch event will proceed at 11:00 AM. It is the goal to have all eight of the standard alphas assembled by the students launched before the heat of the noon-day sun rises. We want to encourage our membership and invited guests to this event to arrive very early which for me means leaving Los Angeles at least before 7:00 AM. Dave Crisalli will be our pyro-op for this event and I have volunteered to be his apprentice unless one of our other pyro-ops in training would like to do so.

[10]
I had an agenda item to discuss future events at the MTA including one possible event with a BBC program in the UK. This may occur in October 2018 and discussions are still in work. The RRS will likely hold another educational event with the LAPD CSP in the fall which may be able to coincide. Larry had made contact with the Girl Scouts of Orange County who were seeking the RRS to participate in a regional STEM event. All of these projects will also be discussed further at the next meeting in August 2018 as more information comes in.

[11]
Osvaldo gave our meeting audience a demonstrate of his new method of loading micrograin propellant (without the propellant of course). For some background, the RRS standard alpha is a common platform in our society events. They are particularly common with our educational classes that we hold regularly. Based on the micrograin propellant invented by our founder, George James, this simple mixture of zinc and sulfur powders presents a challenge in loading. The coupler is installed with an O-ring seal at the head end. The 3-foot long, 1.25-inch DOM steel tube with four welded sheet metal fins and holes drilled for installing the nozzle is basically an open tube closed at one end.

alpha bulkhead loaded and bolted in

RRS standard alpha configured for propellant loading; nozzle is installed at the end of loading

The 80% zinc and 20% sulfur by weight propellants are premixed by tumbling and is loaded into the propellant tube by hand. Entrapped air is a frustrating factor in getting a tight packing of the propellant into the tube. As the powder falls to the bottom, the air can not completely get out of the way and empty pockets form. These pockets can be released by simple mechanical tapping or gently bouncing the tube vertically on a wooden block. In the finite volume of the propellant tube, entrapped air is a waste of space that could be filled with the mass of propellant. The loaded weight of the alpha subtracted from the empty weight of the alpha propellant tube at the start is the only real gauge of how well packed the propellant is.

Many methods of compaction and casting of the micrograin propellant to achieve higher densities have been tried over the RRS history. Some of these have had success, most did not. This topic is a long subject which can be researched and summarized in a separate article if there is sufficient interest. For now, only the simple method of manually loading the premixed powder will be discussed.

The common method used today is to pour in the propellant mixture one cup at a time and bounce the bottom of the tube on a wooden beam. Vibration devices do work, but they tend to work too well in that the zinc and sulfur being of different densities start to separate which is very undesirable. This method of one cup at a time is slow, but effective.

a cupful of micrograin propellant drawn from the tumbling mixing drum

traditional loading method that carefully removes trapped air by periodic mechanical tapping is very slow and very messy

When the RRS started to run more launch events with schools, loading a dozen or more propellant tubes started to take a great deal of time including coming to the MTA on the night before. Osvaldo who is the main person doing this loading sought a faster but effective means to loading.

He tried a few experimental practices including drawing a vacuum at the bottom of the tube with a special fitting and using a lowered piston on a string approach, both of which were flawed and not that successful.

His most recent method has proven to be very effective and quick. He gets a length of tiny brass tubing and loosely affixes a round cardboard disk. With this cardboard disk inserted into the mouth of the tube and a proper funnel attached, the full propellant load of the alpha can be loaded directly into the funnel.

Rapid micrograin loading by small brass tube and cardboard disk

By allowing the weight of the full propellant load to lower itself into the tube on top of the cardboard disk, the disk serves as a seal to divert any entrapped air beneath up through the hole in the brass tube. The air below the solid powder mass has a route to escape through the hollow tube up the center. With this technique the whole propellant load can drop into the tube in one motion, leaving the cardboard disk at the bottom. The brass tube easily pulls out from the cardboard disk and out of the propellant tube now loaded with the micrograin propellant.

tube and cardboard disk aligned in the funnel in the mouth of an empty RRS alpha propellant tube

Illustration of rapid method of loading micrograin propellant

This technique eliminates the barrier of the air below trying to move past the falling mass of powder and results in a reasonably dense packing of the propellant all done in one shot.

Osvaldo Tarditti and his rapid method of micrograin loading; note the very small but long brass tubing and the extra large funnel to hold the full ~4 lb load of micrograin propellant

I took photos of Osvaldo’s process at the last launch event with UCLA on June 2, 2018. The pictures and illustrations I have posted of the technique that has been successfully demonstrated at the MTA are hopefully clear enough to show the principle.

[12]
This was intended to the first topic, but Osvaldo circled back it at the end. Osvaldo successfully flew a parachute system in an RRS alpha. This is a feat that I don’t think has been in done in a very, very long time. Most of our alpha rockets come back ballistically and require back-breaking extraction by shoveling out of the hard-packed dry lake bed. It has been a general goal of the RRS to encourage more payloads to be flown in the RRS standard alphas as we do a lot of these flights. It has been a goal of mine to eventually fly a parachute system in the tight confines of the alpha’s payload tube. Osvaldo developed a pull switch that activates a timer chip inside to delay the firing of a small powder charge that ejects the parachute by means of a rising piston. This was discussed in the details of the same launch event with UCLA on June 2, 2018.

Osvaldo stands behind his RRS standard alpha parachute system successfully flown at the MTA on 6/2/2018

We did not have a lot of time to show all of the parts, but Osvaldo did mention that he will fly his parachute system again at the July 21, 2018 launch event with a modified timer design and break-wire system that is more compact. I may get Osvaldo to write a full detailed article on this subject in a future posting to come. This parachute system if proven to be repeatably effective may become a standard part of our RRS launch events with schools, but we must consider the added costs of producing them with standard costs we already charge for our RRS standard alpha. This is a really good topic and I’m sure we’ll be talking more about this in August.

[BONUS]
Richard Garcia treated us to a short video made by Microcosm back in 2001 with their experimental launch vehicle that did engine test at the RRS MTA. This dual-engine liquid rocket had thrust vector actuators and went through a successful hot-firing in the video.

Microcosm’s Scorpius-S-RM-20k vehicle test at the RRS MTA in 2001

The video showed the later rocket flight. We may post this on the RRS YouTube channel for everyone to see. It was a nice way to conclude our meeting with a rocket firing and flight.

[IN CLOSING]
We adjourned the meeting very late (well past 10:00 PM) which is only possible due to the kindness of our hosts at the Ken Nakaoka Community Center which closes at 9:00 PM. We are very grateful to them, but the RRS must strive to be more effective in our meetings to start on time and finish on time.

If there are any topics for next month’s meeting, please contact the RRS and make your suggestion. In the August meeting, we will likely discuss the July 21st launch and lessons learned from that event. We also have other events planned for this fall.

The next RRS meeting will be August 10th.

If there is anything I have missed or misstated, please let me know.
secretary@rrs.org

Report on timer circuit design

This is a posting of a report written by our current society vice-president, Frank Miuccio, many years back. It has been reproduced here on our website for preservation. A hard-copy revision of the document will be published in the society archives. The original date shows it was Revision A, dated March 9, 1989, nearly 30 years ago. Some of the figures mentioned in the text are missing (until we find them again) and others have been remade for clarity.

Frank’s timer report, original cover from 1989

In reading the report, you can see that the technology of some aspects of the design are no longer commonly practiced, such as the use of mercury switches and mechanical relays, but the circuit principles are still sound. I have noticed that the model rocketry community, such as our friends at Rocketry Organization of California (ROC), have made great strides in timer designs.

Rocketry Organization of California

There are many commercial suppliers across the country that make a range of simple and complex designs that are reliable and affordable. Some products can be bought ready to use in your rocket application.

Eggtimer Rocketry

Also noteworthy is that lithium polymer battery technology is taking over from the conventional 9-volt. This doesn’t come as a surprise to many, but certainly worth mentioning. Some people still use the old battery types, but there are many smaller and very powerful options in batteries thanks to the growing airborne drone community.

It is the society’s intention to show this report to inspire our members today to expand upon the work done before. Many effective timer circuits are commercially available, but years before, to have such a device required a bit of ingenuity combined with plain trial and error. Enjoy!

——

TIMER CIRCUIT REPORT
by Frank Miuccio, RRS

On June 25, 1988 at the Mojave Test Area (MTA), a single stage micrograin (80% zinc, 20% sulfur) rocket was flown with a simple payload that anyone can build. The payload consists of a timer that was set for approximately 18 seconds, a parachute, and an ejection mechanism. The timer was used to eject a parachute 18 seconds after burnout and was designed to incorporate the least amount of components. The timer consists of 4 components, 2 batteries and 2 safety switches and a mercury switch.

The main objectives of the payload were the following:
(1) To verify that the ejection mechanism (shown in Figure 1A and 1B) works properly. The ejection mechanism was designed and built by a member of the RRS.
(2) To verify that the mercury switch activates at burnout and stays on for the time constant.
(3) To verify that the timing circuit (shown in Figure 2) functions properly and can withstand the flight environment.

The flight was a success. The parachute ejected and was spotted by the tracking crew, who were located approximately 1000 feet away from the launcher. All three objectives were met with a positive result. A few shortcomings were noted. The parachute, 24 inches in diameter, drifted the rocket north-east and the rocket was lost. Also, the color of the parachute was white which was a problem in spotting.

Figure 2: Timer Circuit

The timing circuit has been used three times.

The first time was on December 28, 1986 on a two-stage rocket. It was used as a separation time delay for the second stage. The timer was installed in the uppermost section of the first stage motor prior to fueling. It primary function was to ignite the second stage 2 seconds after burnout of the first stage. During fueling of the first stage, a problem was noted. The timer was being exposed to extreme bouncing due to our fueling technique.

The next time, the timer was used as a stage delay was in December 1988. The circuit was packaged in a separate module which would be installed after fueling of the rockets.

The third attempt wasn’t as successful as the other two. The timer failed to function. A possible culprit could have been one of the safety switches which was installed backwards. The switch was installed with the “ON” in the upward position. This creates a problem since the acceleration (from launch) could force the switch in the “OFF” position (downward).

The timer looks promising that it can cover various time constants. To determine the desired time the values of the capacitor [C1] and resistor [R1] can be varied. One can calculate the values needed as follows in the formula below.

Time delay = [C1] * [R1] * 1.10

The following steps are used to achieve the desired time constant when building the circuit:

(1) Wire and/or solder in the circuitry except the resistor [R1] and capacitor [C1].

(2) Chose a value for the capacitor [C1] and permanently install it in the circuit. Note that the value needs to be in the microfarad (uF) range. In this report, a 22 uF capacitor was used.

(3) Calculate the value needed for the resistor [R1] by using the time delay formula. Note that this will only give you an approximation of the actual time delay. The resistance will be in the kilo-Ohm to low mega-Ohm range.

(4) Adjust a potentiometer (also called a “pot” or a “trim-pot”) to the calculated value (Pin 1 to the wiper) and temporarily connect the pot in place of the resistor [R1] (pin 1 to the wiper).

Potentiometer (adjustable resistor) next to a fixed value resistor

(5) Test the timer to find out if you need to adjust the pot by increasing or decreasing its resistance. Note that if the timer delay is longer than the desired time constant, decrease the pot resistance. Conversely, if the timer delay is too short, increase the pot resistance.

(6) Adjust the pot as needed and repeat Step 5 to get the timer delay correct.

(7) Measure the resistance value of the pot (Pin 1 to wiper) with a voltmeter then find and permanently install a fixed resistor of that value in its place [R1]. In this report, a value of 732 kilo-Ohms was measured when the circuit met the desired time period. A more common size of resistor is 750 kilo-Ohms which is close enough.

(8) Test the timer to verify the accuracy of the time constant.

(9) Once the circuit is tested and complete, surround and enclose the timer circuit with RTV. This is needed due to the G’s experienced during flight.

GOOD LUCK!

—————–

Editor’s notes:

I have found that in modern times (circa 2018) electronic component stores are not as common as they once were. RadioShack is still in business, but they are not the big company that they used to be. I have had good luck in getting what I need from a local store in my neighborhood in Westminster, CA (Orange County). They have nearly everything an electronic hobbyist could want including lithium polymer batteries of all sizes.

JK Electronics in Westminster, CA

JK Electronics – Westminster, CA

Ordering from online suppliers (DigiKey) is always an option, but the catalog information posted by the mainstream suppliers can be difficult to interpret if you are not an electronics expert. Also getting small quantities (less than 100 units) can also make ordering excessively expensive when the shipping costs far more than the handful of parts you are ordering. Amazon and Ebay can be a helpful resource, but the buyer must be aware of the specifics of exactly what you need. Always do your homework, consult the advice of experts and you will be more sure to get the components you want.

Also of historical note, the K1 RELAY element of Frank’s timer circuit used a W107DIP-5 (5-volt) mechanical relay made by Magnecraft Electrical Company of Northbrook, Illinois. Frank had the actual catalog from Magnecraft in his report so I took a photo of the relay he had selected.

Magnecraft Electric Company, original print catalog

In this photo to the left, you can see the circuit diagram of how this Dual In-Line Packaged (DIP) reed relay is connected. This 107 model is a normally open (NO) single-pole, single-throw (SPST) type of device and contact rated for 10 VA.

Magnecraft W107DIP-5 catalog specs and circuit diagram

I’m not sure if Magnecraft Electric Company is still around, but a modern update to the timer circuit design would likely use a solid-state NPN type of bipolar junction transistor (BJT) instead of the mechanical relay. This exercise is left to the individual to pursue, but not in this article.

NPN type of Bipolar Junction Transistor (BJT)

example of an NPN-type of BJT, rated for 1-watt, connections are labelled

It is important to make sure you know which pin or connection is which. The polarity of the circuit element you are using can be critical. For example, the longer lead on a capacitor is often the positive (+) one. The case on a capacitor should also have a negative sign (-) or a dash symbol to indicate which pin is the negative one. The circuit diagram that Frank included in his report has been careful to show these important details on polarity.

Spark Fun website on electrolytic capacitors and proper polarity

One should also note that very often the pins on a chip are numbered in specific sequential pattern, but the circuit diagrams often don’t follow these and simply call out the pin location by number only. I have put the pin diagram for the common 555 timer chip below to illustrate this important distinction between a physical layout and the schematic which doesn’t always match the physical locations.

555 timer chip with the actual pin locations, notice the notch at the top to show where “1” starts

Just to give a little more detail on the mechanical relay that Frank used, I have re-created the pin diagram from the Magnecraft catalog picture showing the layout of the 14 pin connections. You’ll only need four of these connections (2, 6, 8, 14) as seen in Frank’s circuit.

Pin layout for reed switch type of mechanical relay, Magnecraft WR107 DIP-5

Also, a word about the timer delay formula is that it is based on the basic RC circuit type that has an exponential rise relationship once the circuit closes and starts. For simplicity, this formula just assumes a fixed 1.1 ratio to relate the product of the capacitance and resistance value into the predicted time delay in seconds.

Sample calculation of the approximated time delay with capacitor and resistor values converted to seconds

It is important to understand that this is only an approximation and actual experiments are required to be more precise. Each of the lines and connections adds a little bit of variance to the actual delay time you will see and it’s hard to know exactly what this is without testing. Frank’s instructions go into how to do this by first using an adjustable resistor (potentiometer / pot / trim-pot) to measure what resistance you need, then you go get a fixed resistor to install at the end. This way, you can adjust for some of the real-world effects of your connections and verify that your timer will give you the fixed time delay you want. Also remember when buying capacitors and resistors, you will have to buy them in the sizes that are common. Even with the modest precision of these devices (+/-10% on capacitors; +/-5% on resistors), you can still get very close to the time delay you want and these parts aren’t very expensive.

Some people will put in an adjustable resistor in their circuit designs which is fine if the pot can stay tuned on the exact setting you want and you have the access to make adjustments if needed. Typically, you don’t have good access once the payload is installed on the rocket, so this is why this design has chosen to permanently attach a fixed value resistor after some testing to validate the operation.

Lastly, I should make a note on the use of RTV for “potting” or encasing the circuit. Room temperature vulcanizing (RTV) silicone rubber is a liquid compound that usually comes in small tubes and bought in automotive shops (e.g. Autozone) that after it dries will make a rubbery solid. This final step of encasing your circuit in a flexible but firm solid is considered by some to be necessary to secure the timer circuit from deflecting and possibly malfunctioning under the high acceleration experienced in the rocket flight.

Others feel that this step is not necessary. It has also been said that RTV is corrosive to electrical contacts and should not be used. In any case, you must make a structurally robust circuit that stays put, doesn’t break and will protect your connections from accidentally shorting against the interior metallic walls of your rocket parts (if you have them). The high G-loads from a micrograin rocket’s acceleration are not trivial. Proper packaging your payloads is a very important consideration in rocketry.

The method of successfully potting a circuit in RTV is probably worthy of a separate discussion. It is wise to have all of your leads sticking out of the drying potting compound you’re using better it sets otherwise you can’t connect the right parts when the mess is dry. It sounds obvious, but wait until you screw it up?! 😉

Thanks for reading. Look to the RRS.ORG for more articles on different rocketry subjects past, present and future.